Skip to main content

A Review of Noninvasive Techniques for Skin Cancer Detection in Dermatology

Abstract

As a result of increasing melanoma incidence and challenges with clinical and histopathologic evaluation of pigmented lesions, noninvasive techniques to assist in the assessment of skin lesions are highly sought after. This review discusses the methods, benefits, and limitations of adhesive patch biopsy, electrical impedance spectroscopy (EIS), multispectral imaging, high-frequency ultrasonography (HFUS), optical coherence tomography (OCT), and reflectance confocal microscopy (RCM) in the detection of skin cancer. Adhesive patch biopsy provides improved sensitivity and specificity for the detection of melanoma without a trade-off of higher sensitivity for lower specificity seen in other diagnostic tools to aid in skin cancer detection, including EIS and multispectral imaging. EIS and multispectral imaging provide objective information based on computer-assisted diagnosis to assist in the decision to biopsy and/or excise an atypical melanocytic lesion. HFUS may be useful for the determination of skin tumor depth and identification of surgical borders, although further studies are necessary to determine its accuracy in the detection of skin cancer. OCT and RCM provide enhanced resolution of skin tissue and have been applied for improved accuracy in skin cancer diagnosis, as well as monitoring the response of nonsurgical treatments of skin cancers and the determination of tumor margins and recurrences. These novel approaches to skin cancer assessment offer opportunities to dermatologists, but are dependent on the individual dermatologist’s comfort, knowledge, and desire to invest in training and implementation of noninvasive techniques. These noninvasive modalities may have a role in the complementary assessment of skin cancers, although histopathologic diagnosis remains the gold standard for the evaluation of skin cancer.

This is a preview of subscription content, access via your institution.

References

  1. Gerami P, Alsobrook JP, Palmer TJ, Robin HS. Development of a novel noninvasive adhesive patch test for the evaluation of pigmented lesions of the skin. J Am Acad Dermatol. 2014;71(2):237–44.

    PubMed  Google Scholar 

  2. Ferris LK, Jansen B, Ho J, Busam KJ, Gross K, Hansen DD, et al. Utility of a noninvasive 2-gene molecular assay for cutaneous melanoma and effect on the decision to biopsy. JAMA Dermatol. 2017;153(7):675–80.

    PubMed  PubMed Central  Google Scholar 

  3. Malvehy J, Hauschild A, Curiel-Lewandrowski C, Mohr P, Hofmann-Wellenhof R, Motley R, et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol. 2014;171(5):1099–107.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Dinnes J, Bamber J, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C, et al. High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst Rev. 2018;(12):CD013188.

  5. Gerami P, Yao Z, Polsky D, Jansen B, Busam K, Ho J, et al. Development and validation of a noninvasive 2-gene molecular assay for cutaneous melanoma. J Am Acad Dermatol. 2017;76(1):114–120.e2.

    PubMed  CAS  Google Scholar 

  6. Kittler H, Pehamberger H, Wolff K, Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002;3(3):159–65.

    PubMed  CAS  Google Scholar 

  7. March J, Hand M, Grossman D. Practical application of new technologies for melanoma diagnosis. J Am Acad Dermatol. 2015;72(6):929–41.

    PubMed  Google Scholar 

  8. Cockerell CJ, Tschen J, Billings SD, Rock C, Evans B, Clarke L. A retrospective study of the influence of a gene expression signature on the treatment of melanocytic tumors by dermatologists. J Am Acad Dermatol. 2015;72(5):AB3–AB3.

  9. Olsen J, Themstrup L, De Carvalho N, Mogensen M, Pellacani G, Jemec GBE. Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma. Photodiagn Photodyn Ther. 2016;16:44–9.

    CAS  Google Scholar 

  10. Niculescu L, Bierhoff E, Hartmann D, Ruzicka T, Berking C, Braunmühl TV. Optical coherence tomography imaging of basal cell carcinoma undergoing photodynamic therapy: a pilot study. Photodiagn Photodyn Ther. 2017;18:133–7.

    Google Scholar 

  11. Markowitz O, Schwartz M, Feldman E, Bienenfeld A, Bieber AK, Ellis J, et al. Evaluation of optical coherence tomography as a means of identifying earlier stage basal cell carcinomas while reducing the use of diagnostic biopsy. J Clin Aesthet Dermatol. 2015;8(10):14–20.

    PubMed  PubMed Central  Google Scholar 

  12. Hussain AA, Themstrup L, Nürnberg BM, Jemec G. Adjunct use of optical coherence tomography increases the detection of recurrent basal cell carcinoma over clinical and dermoscopic examination alone. Photodiagn Photodyn Ther. 2016;14:178–84.

    CAS  Google Scholar 

  13. Glazer AM, Rigel DS, Winkelmann RR, Farberg AS. Clinical diagnosis of skin cancer: enhancing inspection and early recognition. Dermatol Clin. 2017;35(4):409–16.

    PubMed  CAS  Google Scholar 

  14. Tran KT, Wright NA, Cockerell CJ. Biopsy of the pigmented lesion—when and how. J Am Acad Dermatol. 2008;59(5):852–71.

    PubMed  Google Scholar 

  15. Wassef C, Rao BK. Uses of non-invasive imaging in the diagnosis of skin cancer: an overview of the currently available modalities. Int J Dermatol. 2013;52(12):1481–9.

    PubMed  Google Scholar 

  16. Wachsman W, Morhenn V, Palmer T, Walls L, Hata T, Zalla J, et al. Noninvasive genomic detection of melanoma. Br J Dermatol. 2011;164(4):797–806.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Lezcano C, Jungbluth AA, Nehal KS, Hollmann TJ, Busam KJ. PRAME expression in melanocytic tumors. Am J Surg Pathol. 2018;42(11):1456–65.

    PubMed  PubMed Central  Google Scholar 

  18. Hornberger J, Rigel D. Clinical and economic implications of a noninvasive molecular pathology assay for early detection of melanoma. J Am Acad Dermatol. 2018;79(3):AB75–AB75.

  19. Kuzmina N, Talme T, Lapins J, Emtestam L. Non-invasive preoperative assessment of basal cell carcinoma of nodular and superficial types. Skin Res Technol. 2005;11(3):196–200.

    PubMed  Google Scholar 

  20. Svoboda RM, Prado G, Mirsky RS, Rigel DS. Assessment of clinician accuracy for diagnosing melanoma on the basis of electrical impedance spectroscopy score plus morphology versus lesion morphology alone. J Am Acad Dermatol. 2019;80(1):285–7.

    PubMed  Google Scholar 

  21. Welzel J, Schuh S. Noninvasive diagnosis in dermatology. J Dtsch Dermatol Ges. 2017;15(10):999–1016.

    PubMed  Google Scholar 

  22. Har-Shai Y, Glickman YA, Siller G, McLeod R, Topaz M, Howe C, et al. Electrical impedance scanning for melanoma diagnosis: a validation study. Plast Reconstr Surg. 2005;116(3):782–90.

    PubMed  CAS  Google Scholar 

  23. Glickman YA, Filo O, David M, Yayon A, Topaz M, Zamir B, et al. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res Technol. 2003;9(3):262–8.

    PubMed  Google Scholar 

  24. Wells R, Gutkowicz-Krusin D, Veledar E, Toledano A, Chen SC. Comparison of diagnostic and management sensitivity to melanoma between dermatologists and MelaFind: a pilot study. Arch Dermatol. 2012;148(9):1083–4.

    PubMed  Google Scholar 

  25. Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):489–93.

    PubMed  CAS  Google Scholar 

  26. Kojo K, Lahtinen T, Oikarinen A, Oivanen T, Artama M, Pastila R, et al. Reliability and validity of a bioimpedance measurement device in the assessment of UVR damage to the skin. Arch Dermatol Res. 2008;300(5):253–61.

    PubMed  Google Scholar 

  27. Monheit G, Cognetta AB, Ferris L, Rabinovitz H, Gross K, Martini M, et al. The performance of MelaFind: a prospective multicenter study. Arch Dermatol. 2011;147(2):188–94.

    PubMed  Google Scholar 

  28. Gutkowicz-Krusin D, Elbaum M, Jacobs A, Keem S, Kopf AW, Kamino H, et al. Precision of automatic measurements of pigmented skin lesion parameters with a MelaFind™ multispectral digital dermoscope. Melanoma Res. 2000;10(6):563–70.

    PubMed  CAS  Google Scholar 

  29. Rigel DS, Roy M, Yoo J, Cockerell CJ, Robinson JK, White R. Impact of guidance from a computer-aided multispectral digital skin lesion analysis device on decision to biopsy lesions clinically suggestive of melanoma. Arch Dermatol. 2012;148(4):541–3.

    PubMed  Google Scholar 

  30. Hauschild A, Chen SC, Weichenthal M, Blum A, King HC, Goldsmith J, et al. To excise or not: impact of MelaFind on German dermatologists’ decisions to biopsy atypical lesions. J Dtsch Dermatol Ges. 2014;12(7):606–14.

    PubMed  Google Scholar 

  31. Cukras AR. On the comparison of diagnosis and management of melanoma between dermatologists and MelaFind. JAMA Dermatol. 2013;149(5):622–3.

    PubMed  Google Scholar 

  32. Moncrieff M, Cotton S, Claridge E, Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol. 2002;146(3):448–57.

    PubMed  CAS  Google Scholar 

  33. Govindan K, Smith J, Knowles L, Harvey A, Townsend P, Kenealy J. Assessment of nurse-led screening of pigmented lesions using SIAscope. J Plast Reconstr Aesthet Surg. 2007;60(6):639–45.

    PubMed  CAS  Google Scholar 

  34. Glud M, Gniadecki R, Drzewiecki KT. Spectrophotometric intracutaneous analysis versus dermoscopy for the diagnosis of pigmented skin lesions: prospective, double-blind study in a secondary reference centre. Melanoma Res. 2009;19(3):176–9.

    PubMed  Google Scholar 

  35. Terstappen K, Suurküla M, Hallberg H, Ericson MB, Wennberg A. Poor correlation between spectrophotometric intracutaneous analysis and histopathology in melanoma and nonmelanoma lesions. J Biomed Opt. 2013;18(6):061223.

    PubMed  Google Scholar 

  36. Haniffa MA, Lloyd JJ, Lawrence CM. The use of a spectrophotometric intracutaneous analysis device in the real-time diagnosis of melanoma in the setting of a melanoma screening clinic. Br J Dermatol. 2007;156(6):1350–2.

    PubMed  CAS  Google Scholar 

  37. Hall PN, Hunter JE, Walter FM, Norris P. Use of a spectrophotometric intracutaneous analysis device in the real-time diagnosis of melanoma. Br J Dermatol. 2008;158(2):420–2.

    PubMed  CAS  Google Scholar 

  38. Emery J, Hunter J, Hall P, Watson A, Moncrieff M, Walter F. Accuracy of SIAscopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC Dermatol. 2010;10(1):1–9.

    Google Scholar 

  39. Watson T, Walter FM, Wood A, Morris H, Hall P, Karner S, et al. Learning a novel technique to identify possible melanomas: are Australian general practitioners better than their U.K. colleagues? Asia Pac Fam Med. 2009;8(1):3–3.

  40. Wood A, Morris H, Emery J, Hall PN, Cotton S, Prevost AT, et al. Evaluation of the MoleMate training program for assessment of suspicious pigmented lesions in primary care. Inform Prim Care. 2008;16(1):41–50.

    PubMed  Google Scholar 

  41. Alexander H, Miller DL. Determining skin thickness with pulsed ultra sound. J Invest Dermatol. 1979;72(1):17–9.

    PubMed  CAS  Google Scholar 

  42. Rallan D, Harland CC. Ultrasound in dermatology – basic principles and applications. Clin Exp Dermatol. 2003;28(6):632–8.

    PubMed  CAS  Google Scholar 

  43. Crisan M, Crisan D, Sannino G, Lupsor M, Badea R, Amzica F. Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index. Arch Dermatol Res. 2013;305(4):305–13.

    PubMed  CAS  Google Scholar 

  44. Lassau N, Spatz A, Avril MF, Tardivon A, Margulis A, Mamelle G, et al. Value of high-frequency US for preoperative assessment of skin tumors. Radiographics. 1997;17(6):1559–65.

    PubMed  CAS  Google Scholar 

  45. Bessoud B, Lassau N, Koscielny S, Longvert C, Avril MF, Duvillard P, et al. High-frequency sonography and color Doppler in the management of pigmented skin lesions. Ultrasound Med Biol. 2003;29(6):875–9.

    PubMed  Google Scholar 

  46. Bobadilla F, Wortsman X, Muñoz C, Segovia L, Espinoza M, Jemec GBE. Pre-surgical high resolution ultrasound of facial basal cell carcinoma: correlation with histology. Cancer Imaging. 2008;8(1):163–72.

    PubMed  PubMed Central  Google Scholar 

  47. Dummer W, Blaheta HJ, Bastian BC, Schenk T, Brocker EV, Remy W. Preoperative characterization of pigmented skin lesions by epiluminescence microscopy and high-frequency ultrasound. Arch Dermatol. 1995;131(3):279–85.

    PubMed  CAS  Google Scholar 

  48. Kozárová A, Kozár M, Tonhajzerová I, Pappová T, Minariková E. The Value of high-frequency 20 MHz ultrasonography for preoperative measurement of cutaneous melanoma thickness. Acta Dermatovenerol Croat. 2018;26(1):15–20.

    PubMed  Google Scholar 

  49. Machet L, Belot V, Naouri M, Boka M, Mourtada Y, Giraudeau B, et al. Preoperative measurement of thickness of cutaneous melanoma using high-resolution 20 MHz ultrasound imaging: a monocenter prospective study and systematic review of the literature. Ultrasound Med Biol. 2009;35(9):1411–20.

    PubMed  Google Scholar 

  50. Meyer N, Lauwers-Cances V, Lourari S, Laurent J, Konstantinou MP, Lagarde JM, et al. High-frequency ultrasonography but not 930-nm optical coherence tomography reliably evaluates melanoma thickness in vivo: a prospective validation study. Br J Dermatol. 2014;171(4):799–805.

    PubMed  CAS  Google Scholar 

  51. Nassiri-Kashani M, Sadr B, Fanian F, Kamyab K, Noormohammadpour P, Shahshahani MM, et al. Pre-operative assessment of basal cell carcinoma dimensions using high frequency ultrasonography and its correlation with histopathology. Skin Res Technol. 2013;19(1):e132–8.

    PubMed  Google Scholar 

  52. Pellacani G, Seidenari S. Preoperative melanoma thickness determination by 20-MHz sonography and digital videomicroscopy in combination. Arch Dermatol. 2003;139(3):293–8.

    PubMed  Google Scholar 

  53. Ruocco E, Argenziano G, Pellacani G, Seidenari S. Noninvasive imaging of skin tumors. Dermatol Surg. 2004;30(2 Pt 2):301–10.

    PubMed  Google Scholar 

  54. Kleinerman R, Whang TB, Bard RL, Marmur ES. Ultrasound in dermatology: principles and applications. J Am Acad Dermatol. 2012;67(3):478–87.

    PubMed  Google Scholar 

  55. Alawi SA, Kuck M, Wahrlich C, Batz S, Mckenzie G, Fluhr JW, et al. Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer—a practical approach. Exp Dermatol. 2013;22(8):547–51.

    PubMed  Google Scholar 

  56. Themstrup L, Banzhaf CA, Mogensen M, Jemec GBE. Optical coherence tomography imaging of non-melanoma skin cancer undergoing photodynamic therapy reveals subclinical residual lesions. Photodiagn Photodyn Ther. 2014;11(1):7–12.

    CAS  Google Scholar 

  57. Pomerantz R, Zell D, Mckenzie G, Siegel DM. Optical coherence tomography used as a modality to delineate basal cell carcinoma prior to Mohs micrographic surgery. Case Rep Dermatol. 2011;3(3):212–8.

    PubMed  PubMed Central  Google Scholar 

  58. Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L, et al. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg. 2009;35(6):965–72.

    PubMed  CAS  Google Scholar 

  59. Ulrich M, Braunmuehl T, Kurzen H, Dirschka T, Kellner C, Sattler E, et al. The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: an observational study. Br J Dermatol. 2015;173(2):428–35.

    PubMed  CAS  Google Scholar 

  60. Tankam P, Soh J, Canavesi C, Lanis M, Hayes A, Cogliati A, et al. Gabor-domain optical coherence tomography to aid in Mohs resection of basal cell carcinoma. J Am Acad Dermatol. 2019;80(6):1766–9.

    PubMed  Google Scholar 

  61. Wang KX, Meekings A, Fluhr JW, Mckenzie G, Lee DA, Fisher J, et al. Optical coherence tomography-based optimization of Mohs micrographic surgery of basal cell carcinoma: a pilot study. Dermatol Surg. 2013;39(4):627–33.

    PubMed  CAS  Google Scholar 

  62. Sahu A, Yélamos O, Iftimia N, Cordova M, Alessi-Fox C, Gill M, et al. Evaluation of a combined reflectance confocal microscopy-optical coherence tomography device for detection and depth assessment of basal cell carcinoma. JAMA Dermatol. 2018;154(10):1175–83.

    PubMed  PubMed Central  Google Scholar 

  63. Boone MA, Suppa M, Pellacani G, Marneffe A, Miyamoto M, Alarcon I, et al. High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical BCC imitators and differentiation between common subtypes. J Eur Acad Dermatol Venereol. 2015;29(9):1771–80.

    PubMed  CAS  Google Scholar 

  64. Meekings A, Utz S, Ulrich M, Bienenfeld A, Nandanan N, Fisher J, et al. Differentiation of basal cell carcinoma subtypes in multi-beam swept source optical coherence tomography (MSS-OCT). J Drugs Dermatol. 2016;15(5):545–50.

    PubMed  Google Scholar 

  65. Boone MA, Marneffe A, Suppa M, Miyamoto M, Alarcon I, Hofmann-Wellenhof R, et al. High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2015;29(8):1606–15.

    PubMed  CAS  Google Scholar 

  66. Boone MA, Suppa M, Dhaenens F, Miyamoto M, Marneffe A, Jemec G, et al. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography. Arch Dermatol Res. 2016;308(1):7–20.

    PubMed  CAS  Google Scholar 

  67. Gambichler T, Schmid-Wendtner MH, Plura I, Kampilafkos P, Stücker M, Berking C, et al. A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi. J Eur Acad Dermatol Venereol. 2015;29(3):537–41.

    PubMed  CAS  Google Scholar 

  68. Cheng HM, Lo S, Scolyer R, Meekings A, Carlos G, Guitera P. Accuracy of optical coherence tomography for the diagnosis of superficial basal cell carcinoma: a prospective, consecutive, cohort study of 168 cases. Br J Dermatol. 2016;175(6):1290–300.

    PubMed  CAS  Google Scholar 

  69. Maher NG, Blumetti TP, Gomes EE, Cheng HM, Satgunaseelan L, Lo S, et al. Melanoma diagnosis may be a pitfall for optical coherence tomography assessment of equivocal amelanotic or hypomelanotic skin lesions. Br J Dermatol. 2017;177(2):574–7.

    PubMed  CAS  Google Scholar 

  70. Haroon A, Shafi S, Rao BK. Using reflectance confocal microscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):457–64.

    PubMed  CAS  Google Scholar 

  71. Tavoloni Braga JC, de Paula Ramos Castro R, Moraes Pinto Blumetti TC, Rocha Mendes FB, Arêas de Souza Lima Beltrame Ferreira J, Rezze GG. Opening a window into living tissue. Dermatol Clin. 2016;34(4):377–94.

  72. Longo C, Lallas A, Kyrgidis A, Rabinovitz H, Moscarella E, Ciardo S, et al. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy. J Am Acad Dermatol. 2014;71(4):716–724.e1.

    PubMed  Google Scholar 

  73. Carrera C, Marghoob AA. Discriminating nevi from melanomas. Dermatol Clin. 2016;34(4):395–409.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Que SK, Grant-Kels JM, Longo C, Pellacani G. Basics of confocal microscopy and the complexity of diagnosing skin tumors. Dermatol Clin. 2016;34(4):367–75.

    PubMed  CAS  Google Scholar 

  75. Borsari S, Pampena R, Lallas A, Kyrgidis A, Moscarella E, Benati E, et al. Clinical indications for use of reflectance confocal microscopy for skin cancer diagnosis. JAMA Dermatol. 2016;152(10):1093–8.

    PubMed  Google Scholar 

  76. Longo C, Pellacani G. Melanomas. Dermatol Clin. 2016;34(4):411–9.

    PubMed  Google Scholar 

  77. Guilera JM, Barreiro Capurro A, Carrera Alvárez C, Puig Sardá S. The role of reflectance confocal microscopy in clinical trials for tumor monitoring. Dermatol Clin. 2016;34(4):519–26.

    PubMed  CAS  Google Scholar 

  78. Que SK, Grant-Kels JM, Rabinovitz HS, Oliviero M, Scope A. Application of handheld confocal microscopy for skin cancer diagnosis. Dermatol Clin. 2016;34(4):469–75.

    PubMed  CAS  Google Scholar 

  79. Star P, Guitera P. Lentigo maligna, macules of the face, and lesions on sun-damaged skin. Dermatol Clin. 2016;34(4):421–9.

    PubMed  CAS  Google Scholar 

  80. Gill M, González S. Enlightening the pink. Dermatol Clin. 2016;34(4):443–58.

    PubMed  CAS  Google Scholar 

  81. Ulrich M, Zalaudek I, Welzel J. Shining into the white. Dermatol Clin. 2016;34(4):459–67.

    PubMed  CAS  Google Scholar 

  82. Weber P, Tschandl P, Sinz C, Kittler H. Dermatoscopy of neoplastic skin lesions: recent advances, updates, and revisions. Curr Treat Opt Oncol. 2018;19(11):1–17.

    Google Scholar 

  83. Menzies SW, Gutenev A, Avramidis M, Batrac A, Mccarthy WH. Short-term digital surface microscopic monitoring of atypical or changing melanocytic lesions. Arch Dermatol. 2001;137(12):1583–9.

    PubMed  CAS  Google Scholar 

  84. Altamura D, Avramidis M, Menzies SW. Assessment of the optimal interval for and sensitivity of short-term sequential digital dermoscopy monitoring for the diagnosis of melanoma. Arch Dermatol. 2008;144(4):502–6.

    PubMed  Google Scholar 

  85. Tromme I. A promising combination: electrical impedance spectroscopy added at baseline visit to short-term sequential digital dermoscopy. Br J Dermatol. 2017;177(5):1166–7.

    PubMed  CAS  Google Scholar 

  86. Rocha L, Menzies SW, Lo S, Avramidis M, Khoury R, Jackett L, et al. Analysis of an electrical impedance spectroscopy system in short-term digital dermoscopy imaging of melanocytic lesions. Br J Dermatol. 2017;177(5):1432–8.

    PubMed  CAS  Google Scholar 

  87. Geller AC, Halpern AC. The ever-evolving landscape for detection of early melanoma: challenges and promises. J Invest Dermatol. 2013;133(3):583–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haley D. Heibel.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Clay J. Cockerell is a paid consultant for DermTech and has participated in research with the company. Haley D. Heibel and Leah Hooey declare they have no conflicts of interest that might be relevant to the content of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heibel, H.D., Hooey, L. & Cockerell, C.J. A Review of Noninvasive Techniques for Skin Cancer Detection in Dermatology. Am J Clin Dermatol 21, 513–524 (2020). https://doi.org/10.1007/s40257-020-00517-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00517-z