Gerami P, Alsobrook JP, Palmer TJ, Robin HS. Development of a novel noninvasive adhesive patch test for the evaluation of pigmented lesions of the skin. J Am Acad Dermatol. 2014;71(2):237–44.
PubMed
Google Scholar
Ferris LK, Jansen B, Ho J, Busam KJ, Gross K, Hansen DD, et al. Utility of a noninvasive 2-gene molecular assay for cutaneous melanoma and effect on the decision to biopsy. JAMA Dermatol. 2017;153(7):675–80.
PubMed
PubMed Central
Google Scholar
Malvehy J, Hauschild A, Curiel-Lewandrowski C, Mohr P, Hofmann-Wellenhof R, Motley R, et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol. 2014;171(5):1099–107.
PubMed
PubMed Central
CAS
Google Scholar
Dinnes J, Bamber J, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C, et al. High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst Rev. 2018;(12):CD013188.
Gerami P, Yao Z, Polsky D, Jansen B, Busam K, Ho J, et al. Development and validation of a noninvasive 2-gene molecular assay for cutaneous melanoma. J Am Acad Dermatol. 2017;76(1):114–120.e2.
PubMed
CAS
Google Scholar
Kittler H, Pehamberger H, Wolff K, Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002;3(3):159–65.
PubMed
CAS
Google Scholar
March J, Hand M, Grossman D. Practical application of new technologies for melanoma diagnosis. J Am Acad Dermatol. 2015;72(6):929–41.
PubMed
Google Scholar
Cockerell CJ, Tschen J, Billings SD, Rock C, Evans B, Clarke L. A retrospective study of the influence of a gene expression signature on the treatment of melanocytic tumors by dermatologists. J Am Acad Dermatol. 2015;72(5):AB3–AB3.
Olsen J, Themstrup L, De Carvalho N, Mogensen M, Pellacani G, Jemec GBE. Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma. Photodiagn Photodyn Ther. 2016;16:44–9.
CAS
Google Scholar
Niculescu L, Bierhoff E, Hartmann D, Ruzicka T, Berking C, Braunmühl TV. Optical coherence tomography imaging of basal cell carcinoma undergoing photodynamic therapy: a pilot study. Photodiagn Photodyn Ther. 2017;18:133–7.
Google Scholar
Markowitz O, Schwartz M, Feldman E, Bienenfeld A, Bieber AK, Ellis J, et al. Evaluation of optical coherence tomography as a means of identifying earlier stage basal cell carcinomas while reducing the use of diagnostic biopsy. J Clin Aesthet Dermatol. 2015;8(10):14–20.
PubMed
PubMed Central
Google Scholar
Hussain AA, Themstrup L, Nürnberg BM, Jemec G. Adjunct use of optical coherence tomography increases the detection of recurrent basal cell carcinoma over clinical and dermoscopic examination alone. Photodiagn Photodyn Ther. 2016;14:178–84.
CAS
Google Scholar
Glazer AM, Rigel DS, Winkelmann RR, Farberg AS. Clinical diagnosis of skin cancer: enhancing inspection and early recognition. Dermatol Clin. 2017;35(4):409–16.
PubMed
CAS
Google Scholar
Tran KT, Wright NA, Cockerell CJ. Biopsy of the pigmented lesion—when and how. J Am Acad Dermatol. 2008;59(5):852–71.
PubMed
Google Scholar
Wassef C, Rao BK. Uses of non-invasive imaging in the diagnosis of skin cancer: an overview of the currently available modalities. Int J Dermatol. 2013;52(12):1481–9.
PubMed
Google Scholar
Wachsman W, Morhenn V, Palmer T, Walls L, Hata T, Zalla J, et al. Noninvasive genomic detection of melanoma. Br J Dermatol. 2011;164(4):797–806.
PubMed
PubMed Central
CAS
Google Scholar
Lezcano C, Jungbluth AA, Nehal KS, Hollmann TJ, Busam KJ. PRAME expression in melanocytic tumors. Am J Surg Pathol. 2018;42(11):1456–65.
PubMed
PubMed Central
Google Scholar
Hornberger J, Rigel D. Clinical and economic implications of a noninvasive molecular pathology assay for early detection of melanoma. J Am Acad Dermatol. 2018;79(3):AB75–AB75.
Kuzmina N, Talme T, Lapins J, Emtestam L. Non-invasive preoperative assessment of basal cell carcinoma of nodular and superficial types. Skin Res Technol. 2005;11(3):196–200.
PubMed
Google Scholar
Svoboda RM, Prado G, Mirsky RS, Rigel DS. Assessment of clinician accuracy for diagnosing melanoma on the basis of electrical impedance spectroscopy score plus morphology versus lesion morphology alone. J Am Acad Dermatol. 2019;80(1):285–7.
PubMed
Google Scholar
Welzel J, Schuh S. Noninvasive diagnosis in dermatology. J Dtsch Dermatol Ges. 2017;15(10):999–1016.
PubMed
Google Scholar
Har-Shai Y, Glickman YA, Siller G, McLeod R, Topaz M, Howe C, et al. Electrical impedance scanning for melanoma diagnosis: a validation study. Plast Reconstr Surg. 2005;116(3):782–90.
PubMed
CAS
Google Scholar
Glickman YA, Filo O, David M, Yayon A, Topaz M, Zamir B, et al. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res Technol. 2003;9(3):262–8.
PubMed
Google Scholar
Wells R, Gutkowicz-Krusin D, Veledar E, Toledano A, Chen SC. Comparison of diagnostic and management sensitivity to melanoma between dermatologists and MelaFind: a pilot study. Arch Dermatol. 2012;148(9):1083–4.
PubMed
Google Scholar
Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):489–93.
PubMed
CAS
Google Scholar
Kojo K, Lahtinen T, Oikarinen A, Oivanen T, Artama M, Pastila R, et al. Reliability and validity of a bioimpedance measurement device in the assessment of UVR damage to the skin. Arch Dermatol Res. 2008;300(5):253–61.
PubMed
Google Scholar
Monheit G, Cognetta AB, Ferris L, Rabinovitz H, Gross K, Martini M, et al. The performance of MelaFind: a prospective multicenter study. Arch Dermatol. 2011;147(2):188–94.
PubMed
Google Scholar
Gutkowicz-Krusin D, Elbaum M, Jacobs A, Keem S, Kopf AW, Kamino H, et al. Precision of automatic measurements of pigmented skin lesion parameters with a MelaFind™ multispectral digital dermoscope. Melanoma Res. 2000;10(6):563–70.
PubMed
CAS
Google Scholar
Rigel DS, Roy M, Yoo J, Cockerell CJ, Robinson JK, White R. Impact of guidance from a computer-aided multispectral digital skin lesion analysis device on decision to biopsy lesions clinically suggestive of melanoma. Arch Dermatol. 2012;148(4):541–3.
PubMed
Google Scholar
Hauschild A, Chen SC, Weichenthal M, Blum A, King HC, Goldsmith J, et al. To excise or not: impact of MelaFind on German dermatologists’ decisions to biopsy atypical lesions. J Dtsch Dermatol Ges. 2014;12(7):606–14.
PubMed
Google Scholar
Cukras AR. On the comparison of diagnosis and management of melanoma between dermatologists and MelaFind. JAMA Dermatol. 2013;149(5):622–3.
PubMed
Google Scholar
Moncrieff M, Cotton S, Claridge E, Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol. 2002;146(3):448–57.
PubMed
CAS
Google Scholar
Govindan K, Smith J, Knowles L, Harvey A, Townsend P, Kenealy J. Assessment of nurse-led screening of pigmented lesions using SIAscope. J Plast Reconstr Aesthet Surg. 2007;60(6):639–45.
PubMed
CAS
Google Scholar
Glud M, Gniadecki R, Drzewiecki KT. Spectrophotometric intracutaneous analysis versus dermoscopy for the diagnosis of pigmented skin lesions: prospective, double-blind study in a secondary reference centre. Melanoma Res. 2009;19(3):176–9.
PubMed
Google Scholar
Terstappen K, Suurküla M, Hallberg H, Ericson MB, Wennberg A. Poor correlation between spectrophotometric intracutaneous analysis and histopathology in melanoma and nonmelanoma lesions. J Biomed Opt. 2013;18(6):061223.
PubMed
Google Scholar
Haniffa MA, Lloyd JJ, Lawrence CM. The use of a spectrophotometric intracutaneous analysis device in the real-time diagnosis of melanoma in the setting of a melanoma screening clinic. Br J Dermatol. 2007;156(6):1350–2.
PubMed
CAS
Google Scholar
Hall PN, Hunter JE, Walter FM, Norris P. Use of a spectrophotometric intracutaneous analysis device in the real-time diagnosis of melanoma. Br J Dermatol. 2008;158(2):420–2.
PubMed
CAS
Google Scholar
Emery J, Hunter J, Hall P, Watson A, Moncrieff M, Walter F. Accuracy of SIAscopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC Dermatol. 2010;10(1):1–9.
Google Scholar
Watson T, Walter FM, Wood A, Morris H, Hall P, Karner S, et al. Learning a novel technique to identify possible melanomas: are Australian general practitioners better than their U.K. colleagues? Asia Pac Fam Med. 2009;8(1):3–3.
Wood A, Morris H, Emery J, Hall PN, Cotton S, Prevost AT, et al. Evaluation of the MoleMate training program for assessment of suspicious pigmented lesions in primary care. Inform Prim Care. 2008;16(1):41–50.
PubMed
Google Scholar
Alexander H, Miller DL. Determining skin thickness with pulsed ultra sound. J Invest Dermatol. 1979;72(1):17–9.
PubMed
CAS
Google Scholar
Rallan D, Harland CC. Ultrasound in dermatology – basic principles and applications. Clin Exp Dermatol. 2003;28(6):632–8.
PubMed
CAS
Google Scholar
Crisan M, Crisan D, Sannino G, Lupsor M, Badea R, Amzica F. Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index. Arch Dermatol Res. 2013;305(4):305–13.
PubMed
CAS
Google Scholar
Lassau N, Spatz A, Avril MF, Tardivon A, Margulis A, Mamelle G, et al. Value of high-frequency US for preoperative assessment of skin tumors. Radiographics. 1997;17(6):1559–65.
PubMed
CAS
Google Scholar
Bessoud B, Lassau N, Koscielny S, Longvert C, Avril MF, Duvillard P, et al. High-frequency sonography and color Doppler in the management of pigmented skin lesions. Ultrasound Med Biol. 2003;29(6):875–9.
PubMed
Google Scholar
Bobadilla F, Wortsman X, Muñoz C, Segovia L, Espinoza M, Jemec GBE. Pre-surgical high resolution ultrasound of facial basal cell carcinoma: correlation with histology. Cancer Imaging. 2008;8(1):163–72.
PubMed
PubMed Central
Google Scholar
Dummer W, Blaheta HJ, Bastian BC, Schenk T, Brocker EV, Remy W. Preoperative characterization of pigmented skin lesions by epiluminescence microscopy and high-frequency ultrasound. Arch Dermatol. 1995;131(3):279–85.
PubMed
CAS
Google Scholar
Kozárová A, Kozár M, Tonhajzerová I, Pappová T, Minariková E. The Value of high-frequency 20 MHz ultrasonography for preoperative measurement of cutaneous melanoma thickness. Acta Dermatovenerol Croat. 2018;26(1):15–20.
PubMed
Google Scholar
Machet L, Belot V, Naouri M, Boka M, Mourtada Y, Giraudeau B, et al. Preoperative measurement of thickness of cutaneous melanoma using high-resolution 20 MHz ultrasound imaging: a monocenter prospective study and systematic review of the literature. Ultrasound Med Biol. 2009;35(9):1411–20.
PubMed
Google Scholar
Meyer N, Lauwers-Cances V, Lourari S, Laurent J, Konstantinou MP, Lagarde JM, et al. High-frequency ultrasonography but not 930-nm optical coherence tomography reliably evaluates melanoma thickness in vivo: a prospective validation study. Br J Dermatol. 2014;171(4):799–805.
PubMed
CAS
Google Scholar
Nassiri-Kashani M, Sadr B, Fanian F, Kamyab K, Noormohammadpour P, Shahshahani MM, et al. Pre-operative assessment of basal cell carcinoma dimensions using high frequency ultrasonography and its correlation with histopathology. Skin Res Technol. 2013;19(1):e132–8.
PubMed
Google Scholar
Pellacani G, Seidenari S. Preoperative melanoma thickness determination by 20-MHz sonography and digital videomicroscopy in combination. Arch Dermatol. 2003;139(3):293–8.
PubMed
Google Scholar
Ruocco E, Argenziano G, Pellacani G, Seidenari S. Noninvasive imaging of skin tumors. Dermatol Surg. 2004;30(2 Pt 2):301–10.
PubMed
Google Scholar
Kleinerman R, Whang TB, Bard RL, Marmur ES. Ultrasound in dermatology: principles and applications. J Am Acad Dermatol. 2012;67(3):478–87.
PubMed
Google Scholar
Alawi SA, Kuck M, Wahrlich C, Batz S, Mckenzie G, Fluhr JW, et al. Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer—a practical approach. Exp Dermatol. 2013;22(8):547–51.
PubMed
Google Scholar
Themstrup L, Banzhaf CA, Mogensen M, Jemec GBE. Optical coherence tomography imaging of non-melanoma skin cancer undergoing photodynamic therapy reveals subclinical residual lesions. Photodiagn Photodyn Ther. 2014;11(1):7–12.
CAS
Google Scholar
Pomerantz R, Zell D, Mckenzie G, Siegel DM. Optical coherence tomography used as a modality to delineate basal cell carcinoma prior to Mohs micrographic surgery. Case Rep Dermatol. 2011;3(3):212–8.
PubMed
PubMed Central
Google Scholar
Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L, et al. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg. 2009;35(6):965–72.
PubMed
CAS
Google Scholar
Ulrich M, Braunmuehl T, Kurzen H, Dirschka T, Kellner C, Sattler E, et al. The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: an observational study. Br J Dermatol. 2015;173(2):428–35.
PubMed
CAS
Google Scholar
Tankam P, Soh J, Canavesi C, Lanis M, Hayes A, Cogliati A, et al. Gabor-domain optical coherence tomography to aid in Mohs resection of basal cell carcinoma. J Am Acad Dermatol. 2019;80(6):1766–9.
PubMed
Google Scholar
Wang KX, Meekings A, Fluhr JW, Mckenzie G, Lee DA, Fisher J, et al. Optical coherence tomography-based optimization of Mohs micrographic surgery of basal cell carcinoma: a pilot study. Dermatol Surg. 2013;39(4):627–33.
PubMed
CAS
Google Scholar
Sahu A, Yélamos O, Iftimia N, Cordova M, Alessi-Fox C, Gill M, et al. Evaluation of a combined reflectance confocal microscopy-optical coherence tomography device for detection and depth assessment of basal cell carcinoma. JAMA Dermatol. 2018;154(10):1175–83.
PubMed
PubMed Central
Google Scholar
Boone MA, Suppa M, Pellacani G, Marneffe A, Miyamoto M, Alarcon I, et al. High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical BCC imitators and differentiation between common subtypes. J Eur Acad Dermatol Venereol. 2015;29(9):1771–80.
PubMed
CAS
Google Scholar
Meekings A, Utz S, Ulrich M, Bienenfeld A, Nandanan N, Fisher J, et al. Differentiation of basal cell carcinoma subtypes in multi-beam swept source optical coherence tomography (MSS-OCT). J Drugs Dermatol. 2016;15(5):545–50.
PubMed
Google Scholar
Boone MA, Marneffe A, Suppa M, Miyamoto M, Alarcon I, Hofmann-Wellenhof R, et al. High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2015;29(8):1606–15.
PubMed
CAS
Google Scholar
Boone MA, Suppa M, Dhaenens F, Miyamoto M, Marneffe A, Jemec G, et al. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography. Arch Dermatol Res. 2016;308(1):7–20.
PubMed
CAS
Google Scholar
Gambichler T, Schmid-Wendtner MH, Plura I, Kampilafkos P, Stücker M, Berking C, et al. A multicentre pilot study investigating high-definition optical coherence tomography in the differentiation of cutaneous melanoma and melanocytic naevi. J Eur Acad Dermatol Venereol. 2015;29(3):537–41.
PubMed
CAS
Google Scholar
Cheng HM, Lo S, Scolyer R, Meekings A, Carlos G, Guitera P. Accuracy of optical coherence tomography for the diagnosis of superficial basal cell carcinoma: a prospective, consecutive, cohort study of 168 cases. Br J Dermatol. 2016;175(6):1290–300.
PubMed
CAS
Google Scholar
Maher NG, Blumetti TP, Gomes EE, Cheng HM, Satgunaseelan L, Lo S, et al. Melanoma diagnosis may be a pitfall for optical coherence tomography assessment of equivocal amelanotic or hypomelanotic skin lesions. Br J Dermatol. 2017;177(2):574–7.
PubMed
CAS
Google Scholar
Haroon A, Shafi S, Rao BK. Using reflectance confocal microscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):457–64.
PubMed
CAS
Google Scholar
Tavoloni Braga JC, de Paula Ramos Castro R, Moraes Pinto Blumetti TC, Rocha Mendes FB, Arêas de Souza Lima Beltrame Ferreira J, Rezze GG. Opening a window into living tissue. Dermatol Clin. 2016;34(4):377–94.
Longo C, Lallas A, Kyrgidis A, Rabinovitz H, Moscarella E, Ciardo S, et al. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy. J Am Acad Dermatol. 2014;71(4):716–724.e1.
PubMed
Google Scholar
Carrera C, Marghoob AA. Discriminating nevi from melanomas. Dermatol Clin. 2016;34(4):395–409.
PubMed
PubMed Central
CAS
Google Scholar
Que SK, Grant-Kels JM, Longo C, Pellacani G. Basics of confocal microscopy and the complexity of diagnosing skin tumors. Dermatol Clin. 2016;34(4):367–75.
PubMed
CAS
Google Scholar
Borsari S, Pampena R, Lallas A, Kyrgidis A, Moscarella E, Benati E, et al. Clinical indications for use of reflectance confocal microscopy for skin cancer diagnosis. JAMA Dermatol. 2016;152(10):1093–8.
PubMed
Google Scholar
Longo C, Pellacani G. Melanomas. Dermatol Clin. 2016;34(4):411–9.
PubMed
Google Scholar
Guilera JM, Barreiro Capurro A, Carrera Alvárez C, Puig Sardá S. The role of reflectance confocal microscopy in clinical trials for tumor monitoring. Dermatol Clin. 2016;34(4):519–26.
PubMed
CAS
Google Scholar
Que SK, Grant-Kels JM, Rabinovitz HS, Oliviero M, Scope A. Application of handheld confocal microscopy for skin cancer diagnosis. Dermatol Clin. 2016;34(4):469–75.
PubMed
CAS
Google Scholar
Star P, Guitera P. Lentigo maligna, macules of the face, and lesions on sun-damaged skin. Dermatol Clin. 2016;34(4):421–9.
PubMed
CAS
Google Scholar
Gill M, González S. Enlightening the pink. Dermatol Clin. 2016;34(4):443–58.
PubMed
CAS
Google Scholar
Ulrich M, Zalaudek I, Welzel J. Shining into the white. Dermatol Clin. 2016;34(4):459–67.
PubMed
CAS
Google Scholar
Weber P, Tschandl P, Sinz C, Kittler H. Dermatoscopy of neoplastic skin lesions: recent advances, updates, and revisions. Curr Treat Opt Oncol. 2018;19(11):1–17.
Google Scholar
Menzies SW, Gutenev A, Avramidis M, Batrac A, Mccarthy WH. Short-term digital surface microscopic monitoring of atypical or changing melanocytic lesions. Arch Dermatol. 2001;137(12):1583–9.
PubMed
CAS
Google Scholar
Altamura D, Avramidis M, Menzies SW. Assessment of the optimal interval for and sensitivity of short-term sequential digital dermoscopy monitoring for the diagnosis of melanoma. Arch Dermatol. 2008;144(4):502–6.
PubMed
Google Scholar
Tromme I. A promising combination: electrical impedance spectroscopy added at baseline visit to short-term sequential digital dermoscopy. Br J Dermatol. 2017;177(5):1166–7.
PubMed
CAS
Google Scholar
Rocha L, Menzies SW, Lo S, Avramidis M, Khoury R, Jackett L, et al. Analysis of an electrical impedance spectroscopy system in short-term digital dermoscopy imaging of melanocytic lesions. Br J Dermatol. 2017;177(5):1432–8.
PubMed
CAS
Google Scholar
Geller AC, Halpern AC. The ever-evolving landscape for detection of early melanoma: challenges and promises. J Invest Dermatol. 2013;133(3):583–5.
PubMed
CAS
Google Scholar