Skip to main content
Log in

New and Emerging Biologics for Atopic Dermatitis

  • Leading Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease that is characterized by complex pathophysiology involving both skin barrier dysfunction and aberrant type 2 inflammation/immune responses. AD can be a debilitating condition that drastically impairs quality of life, especially in patients with moderate-to-severe disease. Currently, topical therapies such as corticosteroids and non-steroidal immunomodulatory therapy provide limited efficacy for patients with moderate-to-severe AD; limitations include inadequate response, cutaneous toxicity from overuse, and poor tolerance due to stinging and burning. Historically, the development of targeted therapies has been challenging due to the complex and multifaceted etiology of AD. Recent progress in understanding the immunopathology of AD reinforces the development of newly targeted therapeutics. The successful launch of dupilumab, a monoclonal antibody targeting the interleukin (IL)-4α receptor subunit, for AD in 2017 spurred the development of a number of biologics targeting novel cytokine and receptor targets that are now in phase II and III of development. This review aims to explore the rationale behind these novel biological therapies and to summarize current clinical studies of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL, et al. Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy. 2018;73(6):1284–93.

    PubMed  CAS  Google Scholar 

  2. Bieber T. Atopic dermatitis. Ann Dermatol. 2010;22(2):125–37.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Brunner PM, Silverberg JI, Guttman-Yassky E, Paller AS, Kabashima K, Amagai M, et al. Increasing comorbidities suggest that atopic dermatitis is a systemic disorder. J Invest Dermatol. 2017;137(1):18–25.

    PubMed  CAS  Google Scholar 

  4. Silverberg JI. Atopic dermatitis treatment: current state of the art and emerging therapies. Allergy Asthma Proc. 2017;38(4):243–9.

    PubMed  CAS  Google Scholar 

  5. Kim JE, Kim JS, Cho DH, Park HJ. Molecular mechanisms of cutaneous inflammatory disorder: atopic dermatitis. Int J Mol Sci. 2016;17(8):1234.

    PubMed Central  Google Scholar 

  6. Guttman-Yassky E, Bissonnette R, Ungar B, Suarez-Farinas M, Ardeleanu M, Esaki H, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):155–72.

    PubMed  CAS  Google Scholar 

  7. Klonowska J, Gleń J, Nowicki RJ, Trzeciak M. New cytokines in the pathogenesis of atopic dermatitis-new therapeutic targets. Int J Mol Sci. 2018;19(10):3086.

    PubMed Central  Google Scholar 

  8. Noda S, Suarez-Farinas M, Ungar B, Kim SJ, de Guzman SC, Xu H, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136(5):1254–64.

    PubMed  CAS  Google Scholar 

  9. Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019;143(1):1–11.

    PubMed  Google Scholar 

  10. DUPIXENT® (dupilumab) Injection. Package insert. Regeneron Pharmaceuticals, Inc. Tarrytown, NY2019.

  11. Sanofi. FDA Approves Dupixent® (dupilumab) for moderate-to-severe atopic dermatitis in adolescents. 2019.

  12. Silverberg JI, Kantor R. The role of Interleukins 4 and/or 13 in the pathophysiology and treatment of atopic dermatitis. Dermatol Clin. 2017;35(3):327–34.

    PubMed  CAS  Google Scholar 

  13. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335–488.

    PubMed  CAS  Google Scholar 

  14. Blauvelt A, de Bruin-Weller M, Gooderham M, Cather JC, Weisman J, Pariser D, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017;389(10086):2287–303.

    PubMed  CAS  Google Scholar 

  15. Deleuran M, Thaci D, Beck LA, de Bruin-Weller M, Blauvelt A, Forman S, et al. Dupilumab shows long-term safety and efficacy in moderate-to-severe atopic dermatitis patients enrolled in a phase 3 open-label extension study. J Am Acad Dermatol. 2019;82(2):377–88.

    PubMed  Google Scholar 

  16. Wollenberg A, Beck LA, Blauvelt A, Simpson EL, Chen Z, Chen Q, et al. Laboratory safety of dupilumab in moderate-to-severe atopic dermatitis: results from three phase III trials (LIBERTY AD SOLO 1, LIBERTY AD SOLO 2, LIBERTY AD CHRONOS). Br J Dermatol. 2019. https://doi.org/10.1111/bjd.18434.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wollenberg A, Ariens L, Thurau S, van Luijk C, Seegräber M, de Bruin-Weller M. Conjunctivitis occurring in atopic dermatitis patients treated with dupilumab–clinical characteristics and treatment. J Allergy Clin Immunol Pract. 2018;6(5):1778–800.

    PubMed  Google Scholar 

  18. Akinlade B, Guttman-Yassky E, de Bruin-Weller M, Simpson EL, Blauvelt A, Cork MJ, et al. Conjunctivitis in dupilumab clinical trials. Br J Dermatol. 2019;181(3):459–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Wollenberg A, Beck L, Blauvelt A, Simpson E, Chen Z, Chen Q, et al. Laboratory safety of dupilumab in moderate-to-severe atopic dermatitis: results from three phase III trials (LIBERTY AD SOLO 1, LIBERTY AD SOLO 2, LIBERTY AD CHRONOS). Br J Dermatol. 2019;. https://doi.org/10.1111/bjd.18434.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dupilumab (Dupixent) for Asthma. JAMA. 2019;321(10):1000–1.

  21. DUPIXENT® (dupilumab) Injection. Package insert. Regeneron Pharmaceuticals, Inc., Tarrytown, NY; Sanofi-Aventis U.S., Bridgewater, NJ; 2019. https://www.regeneron.com/sites/default/files/Dupixent_FPI.pdf. Accessed 20 Oct 2019.

  22. Tsoi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, et al. Atopic dermatitis is an IL-13-dominant disease with greater molecular heterogeneity compared to psoriasis. J Invest Dermatol. 2019;139(7):1480–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Zheng T, Oh MH, Oh SY, Schroeder JT, Glick AB, Zhu Z. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol. 2009;129(3):742–51.

    PubMed  CAS  Google Scholar 

  24. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2(3):110.

    PubMed  PubMed Central  Google Scholar 

  25. De Vuyst E, Mound A, Lambert de Rouvroit C, Poumay Y. Modelling atopic dermatitis during the morphogenetic process involved in reconstruction of a human epidermis. Curr Res Transl Med. 2016;64(4):179–83.

    PubMed  Google Scholar 

  26. Ulzii D, Kido-Nakahara M, Nakahara T, Tsuji G, Furue K, Hashimoto-Hachiya A, et al. Scratching counteracts IL-13 signaling by upregulating the decoy receptor IL-13Ralpha2 in keratinocytes. Int J Mol Sci. 2019;20(13): 3324.

  27. Kasaian MT, Raible D, Marquette K, Cook TA, Zhou S, Tan XY, et al. IL-13 antibodies influence IL-13 clearance in humans by modulating scavenger activity of IL-13Ralpha2. J Immunol. 2011;187(1):561–9.

    PubMed  CAS  Google Scholar 

  28. Wood N, Whitters MJ, Jacobson BA, Witek J, Sypek JP, Kasaian M, et al. Enhanced interleukin (IL)-13 responses in mice lacking IL-13 receptor alpha 2. J Exp Med. 2003;197(6):703–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126(3):332–7.

    PubMed  CAS  Google Scholar 

  30. Popovic B, Breed J, Rees DG, Gardener MJ, Vinall LM, Kemp B, et al. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13Ralpha1 and IL-13Ralpha2. J Mol Biol. 2017;429(2):208–19.

    PubMed  CAS  Google Scholar 

  31. Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C, Ranade K, et al. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb. J Allergy Clin Immunol. 2019;143(1):135–41.

    PubMed  CAS  Google Scholar 

  32. Ultsch M, Bevers J, Nakamura G, Vandlen R, Kelley RF, Wu LC, et al. Structural basis of signaling blockade by anti-IL-13 antibody Lebrikizumab. J Mol Biol. 2013;425(8):1330–9.

    PubMed  CAS  Google Scholar 

  33. Simpson EL, Flohr C, Eichenfield LF, Bieber T, Sofen H, Taieb A, et al. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: a randomized, placebo-controlled phase II trial (TREBLE). J Am Acad Dermatol. 2018;78(5):863–71.e11.

    PubMed  CAS  Google Scholar 

  34. Dermira Presents Data From Phase 2b Study of Lebrikizumab in Patients With Atopic Dermatitis at Fall Clinical Dermatology Conference

  35. : Business Wire; 2019 https://www.businesswire.com/news/home/20191017005896/en/. Accessed 19 Oct 2019

  36. Dermira Announces Initiation of Phase 3 Program Evaluating Lebrikizumab in Patients with Moderate-to-Severe Atopic Dermatiti: Business Wire; 2019 [October 19, 2019]. https://www.businesswire.com/news/home/20191009005218/en/

  37. Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: new therapeutic targets for atopic dermatitis. Exp Dermatol. 2018;27(4):327–31.

    PubMed  CAS  Google Scholar 

  38. Miake S, Tsuji G, Takemura M, Hashimoto-Hachiya A, Vu YH, Furue M, et al. IL-4 Augments IL-31/IL-31 Receptor Alpha Interaction Leading to Enhanced Ccl 17 and Ccl 22 Production in Dendritic Cells: Implications for Atopic Dermatitis. Int J Mol Sci. 2019;20(16): 4053.

  39. Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411–7.

    PubMed  CAS  Google Scholar 

  40. Silverberg JI, Pinter A, Pulka G, Poulin Y, Bouaziz JD, Wollenberg A, et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J Allergy Clin Immunol. 2019;145(1):173-82.

  41. Ungar B, Garcet S, Gonzalez J, Dhingra N, Correa da Rosa J, Shemer A, et al. An integrated model of atopic dermatitis biomarkers highlights the systemic nature of the disease. J Invest Dermatol. 2017;137(3):603–13.

    PubMed  CAS  Google Scholar 

  42. Lou H, Lu J, Choi EB, Oh MH, Jeong M, Barmettler S, et al. Expression of IL-22 in the skin causes Th2-biased immunity, epidermal barrier dysfunction, and pruritus via stimulating epithelial Th2 cytokines and the GRP pathway. J Immunol. 2017;198(7):2543–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J Am Acad Dermatol. 2018;78(5):872–81.e6.

    PubMed  CAS  Google Scholar 

  44. Suarez-Farinas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87.

    PubMed  CAS  Google Scholar 

  45. Maeda S, Hayami Y, Naniwa T, Ueda R. The Th17/IL-23 axis and natural immunity in psoriatic arthritis. Int J Rheumatol. 2012;2012:539683.

    PubMed  PubMed Central  Google Scholar 

  46. Leonardi S, Cuppari C, Manti S, Filippelli M, Parisi GF, Borgia F, et al. Serum interleukin 17, interleukin 23, and interleukin 10 values in children with atopic eczema/dermatitis syndrome (AEDS): association with clinical severity and phenotype. Allergy Asthma Proc. 2015;36(1):74–81.

    PubMed  CAS  Google Scholar 

  47. Khattri S, Brunner PM, Garcet S, Finney R, Cohen SR, Oliva M, et al. Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis. Exp Dermatol. 2017;26(1):28–35.

    PubMed  CAS  Google Scholar 

  48. Saeki H, Kabashima K, Tokura Y, Murata Y, Shiraishi A, Tamamura R, et al. Efficacy and safety of ustekinumab in Japanese patients with severe atopic dermatitis: a randomized, double-blind, placebo-controlled, phase II study. Br J Dermatol. 2017;177(2):419–27.

    PubMed  CAS  Google Scholar 

  49. Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155(2):285–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Indra AK. Epidermal TSLP: a trigger factor for pathogenesis of atopic dermatitis. Expert Rev Proteomics. 2013;10(4):309–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Uysal P, Birtekocak F, Karul AB. The relationship between serum TARC, TSLP and POSTN levels and childhood atopic dermatitis. Clin Lab. 2017;63(7):1071–7.

    PubMed  CAS  Google Scholar 

  52. Simpson EL, Parnes JR, She D, Crouch S, Rees W, Mo M, et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J Am Acad Dermatol. 2019;80(4):1013–21.

    PubMed  CAS  Google Scholar 

  53. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Murakami-Satsutani N, Ito T, Nakanishi T, Inagaki N, Tanaka A, Vien PT, et al. IL-33 promotes the induction and maintenance of Th2 immune responses by enhancing the function of OX40 ligand. Allergol Int. 2014;63(3):443–55.

    PubMed  CAS  Google Scholar 

  55. Seltmann J, Roesner LM, von Hesler FW, Wittmann M, Werfel T. IL-33 impacts on the skin barrier by downregulating the expression of filaggrin. J Allergy Clin Immunol. 2015;135(6):1659–61.e4.

    PubMed  CAS  Google Scholar 

  56. Ogg G. Proof-of-Concept Phase-2a Clinical Trial of ANB020 (Anti-IL-33 Antibody) in the Treatment of Moderate-to-Severe Adult Atopic Dermatitis. European Academy of Allergy and Clinical Immunology Congress; United Kingdom: University of Oxford; May 29th 2018.

  57. Anaptsbio reports Etokimab Atlas Phase 2B Clinical Trial In Moderate-To-Severe Atopic Dermatitis Fails to Meet Primary Endpoint [press release]. San Diego: Globe Newswire2019. https://ir.anaptysbio.com/news-releases/news-release-details/anaptysbio-reports-etokimab-atlas-phase-2b-clinical-trial. Accessed 19 Oct 2019.

  58. Vandeghinste N, Klattig J, Jagerschmidt C, Lavazais S, Marsais F, Haas JD, et al. Neutralization of IL-17C reduces skin inflammation in mouse models of psoriasis and atopic dermatitis. J Invest Dermatol. 2018;138(7):1555–633.

    PubMed  CAS  Google Scholar 

  59. Ramirez-Carrozzi V, Sambandam A, Luis E, Lin Z, Jeet S, Lesch J, et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat Immunol. 2011;12(12):1159–66.

    PubMed  CAS  Google Scholar 

  60. MOR106, an Anti-IL-17C mAb, a Potential New Approach for Treatment of Moderate-to-severe Atopic Dermatitis: Phase 1 Study. [press release]. 2018. https://www.morphosys.com/media-investors/media-center/morphosys-and-galapagos-report-first-promising-signs-of-clinical. Accessed 20 Oct 2019.

  61. Morphosys. Morphosys AG: M0R106 Clinical Development in Atopic Dermatitis Stopped. 2019.

  62. Kurschus FC, Moos S. IL-17 for therapy. J Dermatol Sci. 2017;87(3):221–7.

    PubMed  CAS  Google Scholar 

  63. Ilves T, Harvima IT. OX40 ligand and OX40 are increased in atopic dermatitis lesions but do not correlate with clinical severity. J Eur Acad Dermatol Venereol. 2013;27(2):e197–205.

    PubMed  CAS  Google Scholar 

  64. Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9(4):271–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Papp KA, Gooderham MJ, Girard G, Raman M, Strout V. Phase I randomized study of KHK4083, an anti-OX40 monoclonal antibody, in patients with mild to moderate plaque psoriasis. J Eur Acad Dermatol Venereol. 2017;31(8):1324–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. A Phase 1 Study of KHK4083 in subjects with Atopic Dermatitis [press release]. Kyowa Hakko Kirin Co., Ltd.2018. https://ir.kyowakirin.com/en/library/events/main/02/teaserItems1/0/linkList/00/link/181203_02_KHK4083_en.pdf. Accessed 19 Oct 2019.

  67. Guttman-Yassky E, Pavel AB, Zhou L, Estrada YD, Zhang N, Xu H, et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144(2):482–93.e7.

    PubMed  CAS  Google Scholar 

  68. Kurzrock R, Hickish T, Wyrwicz L, Saunders M, Wu Q, Stecher M, et al. Interleukin-1 receptor antagonist levels predict favorable outcome after bermekimab, a first-in-class true human interleukin-1alpha antibody, in a phase III randomized study of advanced colorectal cancer. Oncoimmunology. 2019;8(3):1551651.

    PubMed  Google Scholar 

  69. Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QA. The role of interleukin-1 in inflammatory and malignant human skin diseases and the rationale for targeting interleukin-1 alpha. Med Res Rev. 2017;37(1):180–21616.

    PubMed  CAS  Google Scholar 

  70. Dr. Eric Simpson to Present Bermekimab Results in Atopic Dermatitis at 2019 AAD Annual Meeting [press release]. 2019. https://investors.xbiotech.com/news-releases/news-release-details/dr-eric-simpson-present-bermekimab-results-atopic-dermatitis. Accessed 21 Oct 2019.

  71. Milgrom H, Fick RB Jr, Su JQ, Reimann JD, Bush RK, Watrous ML, et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med. 1999;341(26):1966–73.

    PubMed  CAS  Google Scholar 

  72. Lane JE, Cheyney JM, Lane TN, Kent DE, Cohen DJ. Treatment of recalcitrant atopic dermatitis with omalizumab. J Am Acad Dermatol. 2006;54(1):68–72.

    PubMed  Google Scholar 

  73. Krathen RA, Hsu S. Failure of omalizumab for treatment of severe adult atopic dermatitis. J Am Acad Dermatol. 2005;53(2):338–40.

    PubMed  Google Scholar 

  74. Heil PM, Maurer D, Klein B, Hultsch T, Stingl G. Omalizumab therapy in atopic dermatitis: depletion of IgE does not improve the clinical course—a randomized, placebo-controlled and double blind pilot study. J Dtsch Dermatol Ges. 2010;8(12):990–8.

    PubMed  Google Scholar 

  75. Holm JG, Thomsen SF. Omalizumab for atopic dermatitis: evidence for and against its use. G Ital Dermatol Venereol. 2019;154(4):480–7.

    PubMed  Google Scholar 

  76. Hotze M, Baurecht H, Rodriguez E, Chapman-Rothe N, Ollert M, Folster-Holst R, et al. Increased efficacy of omalizumab in atopic dermatitis patients with wild-type filaggrin status and higher serum levels of phosphatidylcholines. Allergy. 2014;69(1):132–5.

    PubMed  CAS  Google Scholar 

  77. Chan S, Cornelius V, Chen T, Radulovic S, Wan M, Jahan R, et al. Atopic Dermatitis Anti-IgE Paediatric Trial (ADAPT): the role of anti-IgE in severe paediatric eczema: study protocol for a randomised controlled trial. Trials. 2017;18(1):136 (CQGE031X2201 NCTN).

    PubMed  PubMed Central  Google Scholar 

  78. Haldar P. Patient profiles and clinical utility of mepolizumab in severe eosinophilic asthma. Biologics. 2017;11:81–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A, Laifaoui J, et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy. 2005;60(5):693–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wenelia Baghoomian performed the literature search and drafted the paper, ChanHo Na and Eric Simpson critically revised the work.

Corresponding author

Correspondence to Eric L. Simpson.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

There are no conflict of interest for Wenelia Baghoomian and ChanHo Na. Dr Simpson reports grants and personal fees from AbbVie, grants and personal fees from Eli Lilly, grants from Galderma, grants from Kyowa Hakko Kirin, grants and personal fees from Leo Pharmaceutical, grants from Merck, grants and personal fees from Pfizer, grants and personal fees from Regeneron, personal fees from Sanofi, personal fees from Dermira, grants from Galderma, grants and personal fees from MedImmune, grants from Novartis, grants from Tioga, grants from Celgene, personal fees from Boehringer-Ingelheim, personal fees from Dermavant, personal fees from Forte Bio, personal fees from Incyte, personal fees from Menlo Therapeutics, personal fees from Ortho Dermatologics, personal fees from Pierre Fabre Dermo Cosmetique, personal fees from Valeant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghoomian, W., Na, C. & Simpson, E.L. New and Emerging Biologics for Atopic Dermatitis. Am J Clin Dermatol 21, 457–465 (2020). https://doi.org/10.1007/s40257-020-00515-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00515-1

Navigation