American Journal of Clinical Dermatology

, Volume 19, Issue 4, pp 505–516 | Cite as

Emerging Therapies for Acne Vulgaris

  • Megha K. Trivedi
  • Suzana S. Bosanac
  • Raja K. Sivamani
  • Larissa N. Larsen
Review Article


As we gain a greater understanding of acne pathogenesis, both new agents as well as new uses for established drugs are being considered for the treatment of acne vulgaris. Multiple clinical trials assessing new formulations or combinations of established acne treatments have been conducted, and novel uses of antimicrobials such as modified diallyl disulfide oxide and nitric oxide are being assessed in clinical trials. There are also a multitude of new therapies currently being studied that target the inflammatory cascade of acne pathogenesis, including sebosuppressive and anti-inflammatory phytochemicals, and  small molecule inhibitors targeting sebaceous glands and enzymes, among others. Laser and light therapy is also being modified for the treatment of acne through combination methods with metal nanoshells and vacuum assistance. Probiotics have gained popularity in medicine as greater knowledge of the microbiome and its effects on multiple organ systems is being elucidated. Studies describing the positive effects of certain ammonia-oxidizing bacterial strains in the regulation of the skin’s inflammatory response are ongoing. Therapies for acne are constantly evolving and current gold-standard acne therapy may be supplemented with novel treatment modalities in the near future.


Compliance with Ethical Standards


No funding was provided for the development of this article.

Conflict of interest

Raja K. Sivamani serves as a scientific advisor to Dermveda. Megha K. Trivedi, Suzana S. Bosanac, and Larissa N. Larsen have no conflicts of interest to declare.


  1. 1.
    Perkins AC, Maglione J, Hillebrand GG, Miyamoto K, Kimball AB. Acne vulgaris in women: prevalence across the life span. J Womens Health. 2012;21(2):223–30.CrossRefGoogle Scholar
  2. 2.
    Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014;134(6):1527–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Silverberg JI, Silverberg NB. Epidemiology and extracutaneous comorbidities of severe acne in adolescence: a US population-based study. Br J Dermatol. 2014;170(5):1136–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Cresce ND, Davis SA, Huang WW, Feldman SR. The quality of life impact of acne and rosacea compared to other major medical conditions. J Drugs Dermatol. 2014;13(6):692–7.PubMedGoogle Scholar
  5. 5.
    Anderson KL, Dothard EH, Huang KE, Feldman SR. Frequency of primary nonadherence to acne treatment. JAMA Dermatol. 2015;151(6):623–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Yentzer BA, Ade RA, Fountain JM, Clark AR, Taylor SL, Fleischer AB Jr, et al. Simplifying regimens promotes greater adherence and outcomes with topical acne medications: a randomized controlled trial. Cutis. 2010;86(2):103–8.PubMedGoogle Scholar
  7. 7.
    Fan Y, Hao F, Wang W, Lu Y, He L, Wang G, et al. Multicenter cross-sectional observational study of antibiotic resistance and the genotypes of Propionibacterium acnes isolated from Chinese patients with acne vulgaris. J Dermatol. 2016;43(4):406–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Mendoza N, Hernandez PO, Tyring SK, Haitz KA, Motta A. Antimicrobial susceptibility of Propionibacterium acnes isolates from acne patients in Colombia. Int J Dermatol. 2013;52(6):688–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Schafer F, Fich F, Lam M, Gárate C, Wozniak A, Garcia P. Antimicrobial susceptibility and genetic characteristics of Propionibacterium acnes isolated from patients with acne. Int J Dermatol. 2013;52(4):418–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Narayanan V, Motlekar S, Kadhe G, Bhagat S. Efficacy and safety of nadifloxacin for bacterial skin infections: results from clinical and post-marketing studies. Dermatol Ther. 2014;4(2):233–48.CrossRefGoogle Scholar
  11. 11.
    Kurokawa I, Akamatsu H, Nishijima S, Asada Y, Kawabata S. Clinical and bacteriologic evaluation of OPC-7251 in patients with acne: a double-blind group comparison study versus cream base. J Am Acad Dermatol. 1991;25(4):674–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Tunca M, Akar A, Ozmen I, Erbil H. Topical nadifloxacin 1% cream vs. topical erythromycin 4% gel in the treatment of mild to moderate acne. Int J Dermatol. 2010;49(12):1440–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Shah BJ, Sumathy TK, Dhurat RS, Torsekar RG, Viswanath V, Mukhi JI, et al. Efficacy and tolerability of topical fixed combination of nadifloxacin 1% and adapalene 0.1% in the treatment of mild to moderate acne vulgaris in indian patients: a multicenter, open-labelled, prospective study. Indian J Dermatol. 2014;59(4):385.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sato T, Shirane T, Noguchi N, Sasatsu M, Ito A. Novel anti-acne actions of nadifloxacin and clindamycin that inhibit the production of sebum, prostaglandin E2 and promatrix metalloproteinase-2 in hamster sebocytes. J Dermatol. 2012;39(9):774–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Emingil G, Atilla G, Sorsa T, Luoto H, Kirilmaz L, Baylas H. The effect of adjunctive low-dose doxycycline therapy on clinical parameters and gingival crevicular fluid matrix metalloproteinase-8 levels in chronic periodontitis. J Periodontol. 2004;75(1):106–15.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang C, Gong W, Liu H, Guo Z, Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med. 2014;7(12):4975.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Esterly NB, Koransky JS, Furey NL, Trevisan M. Neutrophil chemotaxis in patients with acne receiving oral tetracycline therapy. Arch Dermatol. 1984;120(10):1308–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Esterly NB, Furey NL, Flanagan LE. The effect of antimicrobial agents on leukocyte chemotaxis. J Invest Dermatol. 1978;70(1):51–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Skidmore R, Kovach R, Walker C, Thomas J, Bradshaw M, Leyden J, et al. Effects of subantimicrobial-dose doxycycline in the treatment of moderate acne. Arch Dermatol. 2003;139(4):459–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Ochsendorf F. Minocycline in acne vulgaris. Am J Clin Dermatol. 2010;11(5):327–41.CrossRefPubMedGoogle Scholar
  21. 21.
    Shemer A, Shiri J, Mashiah J, Farhi R, Gupta AK. Topical minocycline foam for moderate to severe acne vulgaris: phase 2 randomized double-blind, vehicle-controlled study results. J Am Acad Dermatol. 2016;74(6):1251–2.CrossRefPubMedGoogle Scholar
  22. 22.
    Chilcott, W. A randomized, multicenter, double-blind, placebocontrolled study to evaluate the efficacy and safety of 1.5 mg/kg per day of sarecycline compared to placebo in the treatment of acne vulgaris [cited 10 Jul 2017].
  23. 23.
    Borunda JSA, Castro JARM, Santoyo PP, Cervantes LV. Semi-solid topical composition containing pirfenidone and modified diallyl disulfide oxide (m-ddo) for eliminating or preventing acne. Google Patents. 2016. Accessed 17 Jun 2017.
  24. 24.
    Ortega-Peña S, Hidalgo-González C, Robson MC, Krötzsch E. In vitro microbicidal, anti-biofilm and cytotoxic effects of different commercial antiseptics. Int Wound J. 2017;14(3):470–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Juan A-B. molecular and clinical study of the effect of zaxcell versus effezel in the inflammatory and scarring process of moderate and severe acne [cited 10 Jul 2017].
  26. 26.
    Knüppel L, Ishikawa Y, Aichler M, Heinzelmann K, Hatz R, Behr J, et al. A novel antifibrotic mechanism of nintedanib and pirfenidone: inhibition of collagen fibril assembly. Am J Respir Cell Mol Biol. 2017;57(1):77–90.CrossRefPubMedGoogle Scholar
  27. 27.
    Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75(1):39–48.CrossRefPubMedGoogle Scholar
  28. 28.
    Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun. 2005;73(10):6771–81.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother. 2004;48(8):3112–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009;34(5):457–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Cutanea Life Sciences, Inc. A Phase 2, randomized, double-blind, vehicle-controlled, parallel group multicenter study to evaluate the safety and efficacy of CLS001 topical gel versus vehicle applied once daily for 12 weeks to female subjects with moderate to severe acne vulgaris [cited 10 Jul 2017].
  32. 32.
    Faccone D, Veliz O, Corso A, Noguera M, Martínez M, Payes C, et al. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. Eur J Med Chem. 2014;71:31–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Green SJ, Mellouk S, Hoffman SL, Meltzer MS, Nacy CA. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from l-arginine by macrophages and hepatocytes. Immunol Lett. 1990;25(1–3):15–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Green SJ, Nacy CA, Schreiber RD, Granger DL, Crawford RM, Meltzer MS, et al. Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from l-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice. Infect Immun. 1993;61(2):689–98.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Qin M, Landriscina A, Rosen JM, Wei G, Kao S, Olcott W, et al. Nitric oxide-releasing nanoparticles prevent propionibacterium acnes–induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response. J Invest Dermatol. 2015;135(11):2723–31.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Baldwin H, Blanco D, McKeever C, Paz N, Vasquez YN, Quiring J, et al. Results of a phase 2 efficacy and safety study with SB204, an investigational topical nitric oxide-releasing drug for the treatment of acne vulgaris. J Clin Aesthet Dermatol. 2016;9(8):12.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen S, Ostrowski J, Whiting G, Roalsvig T, Hammer L, Currier SJ, et al. Retinoic acid receptor gamma mediates topical retinoid efficacy and irritation in animal models. J Invest Dermatol. 1995;104(5):779–83.CrossRefPubMedGoogle Scholar
  38. 38.
    Jerry T, Ulrike B-P. A Multi-Center, Randomized, Double-Blind, Parallel-Group Vehicle Controlled Study To Compare The Efficacy And Safety Of CD5789 50 μg/g Cream Versus Vehicle Cream In Subjects With Acne Vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  39. 39.
    Celasco G, Moro L, Bozzella R, Ferraboschi P, Bartorelli L, Quattrocchi C, et al. Biological profile of cortexolone 17a-propionate (CB-03-01), a new topical and peripherally selective androgen antagonist. Arzneimittelforschung. 2004;54(12):881–6.PubMedGoogle Scholar
  40. 40.
    Krunic A, Ciurea A, Scheman A. Efficacy and tolerance of acne treatment using both spironolactone and a combined contraceptive containing drospirenone. J Am Acad Dermatol. 2008;58(1):60–2.CrossRefPubMedGoogle Scholar
  41. 41.
    Arowojolu AO, Gallo MF, Lopez LM, Grimes DA. Combined oral contraceptive pills for treatment of acne. Cochrane Database Syst Rev. 2012;7:CD004425.Google Scholar
  42. 42.
    Trifu V, Tiplica G-S, Naumescu E, Zalupca L, Moro L, Celasco G. Cortexolone 17α-propionate 1% cream, a new potent antiandrogen for topical treatment of acne vulgaris. A pilot randomized, double-blind comparative study vs. placebo and tretinoin 0· 05% cream. Br J Dermatol. 2011;165(1):177–83.CrossRefPubMedGoogle Scholar
  43. 43.
    Kohler C, Tschumi K, Bodmer C, Schneiter M, Birkhaeuser M. Effect of finasteride 5 mg (Proscar) on acne and alopecia in female patients with normal serum levels of free testosterone. Gynecol Endocrinol. 2007;23(3):142–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Kumar R, Singh B, Bakshi G, Katare OP. Development of liposomal systems of finasteride for topical applications: design, characterization, and in vitro evaluation. Pharm Dev Technol. 2007;12(6):591–601.CrossRefPubMedGoogle Scholar
  45. 45.
    Boen M, Brownell J, Patel P, Tsoukas MM. the role of photodynamic therapy in acne: an evidence-based review. Am J Clin Dermatol. 2017;18(3):311–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Kwon HH, Moon KR, Park SY, Yoon JY, Suh DH, Lee JB. Daylight photodynamic therapy with 1.5% 3-butenyl 5-aminolevulinate gel as a convenient, effective and safe therapy in acne treatment: a double-blind randomized controlled trial. J Dermatol. 2016;43(5):515–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Alexiades M. Laser and light-based treatments of acne and acne scarring. Clin Dermatol. 2017;35(2):183–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Momen S, Al-Niaimi F. Acne vulgaris and light-based therapies. J Cosmet Laser Ther. 2015;17(3):122–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Cohen BE, Brauer JA, Geronemus RG. Acne scarring: a review of available therapeutic lasers. Lasers Surg Med. 2016;48(2):95–115.CrossRefPubMedGoogle Scholar
  50. 50.
    Qureshi S, Lin JY. Utilizing non-ablative fractional photothermolysis prior to ALA-photodynamic therapy in the treatment of acne vulgaris: a case series. Lasers Med Sci. 2017;32(3):729–32.CrossRefPubMedGoogle Scholar
  51. 51.
    Jeffrey S. Orringer. cooltouch non-ablative laser therapy for acne vulgaris [cited 10 Jul 2017].
  52. 52.
    Mercola JM, Kirsch DL. The basis for microcurrent electrical therapy in conventional medical practice. J Adv Med. 1995;8(2):107–20.Google Scholar
  53. 53.
    Sergey A. Safety and preliminary efficacy of combination blue light phototherapy and microcurrent therapy for the treatment of acne vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  54. 54.
    Paithankar DY, Sakamoto FH, Farinelli WA, Kositratna G, Blomgren RD, Meyer TJ, et al. Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles. J Invest Dermatol. 2015;135(7):1727–34.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, et al. Metal nanoshells. Ann Biomed Eng. 2006;34(1):15–22.CrossRefPubMedGoogle Scholar
  56. 56.
    Politi Y, Levi A, Enk CD, Lapidoth M. Integrated cooling-vacuum-assisted 1540-nm erbium: glass laser is effective in treating mild-to-moderate acne vulgaris. Lasers Med Sci. 2015;30(9):2389–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Theravant corporation. a clinical trial investigating the effects of acleara needle insert on acne vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  58. 58.
    Anderson R, Kothavala S, Berger RS. An Advanced Vacuum and Light Technology for the Treatment of Acne Vulgaris. 2013. Accessed 17 Jun 2017.
  59. 59.
    Karimipour DJ, Karimipour G, Orringer JS. Microdermabrasion: an evidence-based review. Plast Reconstr Surg. 2010;125(1):372–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Lloyd JR. The use of microdermabrasion for acne: a pilot study. Dermatol Surg. 2001;27(4):329–31.PubMedGoogle Scholar
  61. 61.
    Darius J. Karimipour,. microdermabrasion for acne vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  62. 62.
    Fisk WA, Lev-Tov HA, Sivamani RK. Botanical and phytochemical therapy of acne: a systematic review. Phytother Res. 2014;28(8):1137–52.CrossRefPubMedGoogle Scholar
  63. 63.
    Yoon JY, Kwon HH, Min SU, Thiboutot DM, Suh DH. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes. J Invest Dermatol. 2013;133(2):429–40.CrossRefPubMedGoogle Scholar
  64. 64.
    Kim SY, Hyun MY, Go KC, Zouboulis CC, Kim BJ. Resveratrol exerts growth inhibitory effects on human SZ95 sebocytes through the inactivation of the PI3-K/Akt pathway. Int J Mol Med. 2015;35(4):1042–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Fabbrocini G, Staibano S, De Rosa G, Battimiello V, Fardella N, Ilardi G, et al. Resveratrol-containing gel for the treatment of acne vulgaris. Am J Clin Dermatol. 2011;12(2):133–41.CrossRefPubMedGoogle Scholar
  66. 66.
    Eisinger M, Li W-H, Anthonavage M, Pappas A, Zhang L, Rossetti D, et al. A melanocortin receptor 1 and 5 antagonist inhibits sebaceous gland differentiation and the production of sebum-specific lipids. J Dermatol Sci. 2011;63(1):23–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang L, Li W-H, Anthonavage M, Eisinger M. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides. 2006;27(2):413–20.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang L, Anthonavage M, Huang Q. LI W-H, Eisinger M. Proopiomelanocortin peptides and sebogenesis. Ann N Y Acad Sci. 2003;994(1):154–61.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang L, Li W-H, Anthonavage M, Pappas A, Rossetti D, Cavender D, et al. Melanocortin-5 receptor and sebogenesis. Eur J Pharmacol. 2011;660(1):202–6.CrossRefPubMedGoogle Scholar
  70. 70.
    David Lineberry. A multi-center, double-blind, vehicle controlled, phase II Study of JNJ 10229570-AAA for the treatment of acne vulgaris [cited 10 Jul 2017].
  71. 71.
    Mimetica Pty Limited. A randomized, single-blind, phase 2 study to determine the safety, tolerability, and systemic exposure of 3 dose regimens of topically applied MTC896 gel in subjects with acne vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  72. 72.
    Rosenkranz AA, Slastnikova TA, Durymanov MO, Sobolev AS. Malignant melanoma and melanocortin 1 receptor. Biochem (Mosc). 2013;78(11):1228–37.CrossRefGoogle Scholar
  73. 73.
    Steck MB. The role of melanocortin 1 receptor in cutaneous malignant melanoma: along the mitogen-activated protein kinase pathway. Biol Res Nurs. 2014;16(4):421–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Selway JL, Kurczab T, Kealey T, Langlands K. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne. BMC Dermatol. 2013;13(1):10.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Li ZJ, Choi DK, Sohn KC, Seo MS, Lee HE, Lee Y, et al. Propionibacterium acnes activates the NLRP3 inflammasome in human sebocytes. J Invest Dermatol. 2014;134(11):2747–56.CrossRefPubMedGoogle Scholar
  76. 76.
    XOMA (US) LLC. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of gevokizumab in subjects with moderate to severe acne vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  77. 77.
    XBiotech, Inc. A Phase II open label study of the safety, pharmacokinetics, and efficacy of a true human anti-inflammatory therapeutic antibody (RA-18C3) in subjects with moderate to severe acne vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  78. 78.
    Kelhälä H-L, Palatsi R, Fyhrquist N, Lehtimäki S, Väyrynen JP, Kallioinen M, et al. IL-17/Th17 pathway is activated in acne lesions. PLoS One. 2014;9(8):e105238.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Agak GW, Qin M, Nobe J, Kim M-H, Krutzik SR, Tristan GR, et al. Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol. 2014;134(2):366–73.CrossRefPubMedGoogle Scholar
  80. 80.
    Novartis Pharmaceuticals. A Randomized, Subject and Investigator Blinded, Placebo-controlled, Multi-center Study in Parallel Groups to Assess the Efficacy and Safety of CJM112 in Patients With Moderate to Severe Inflammatory Acne [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  81. 81.
    Zouboulis CC, Seltmann H, Alestas T. Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis. Exp Dermatol. 2010;19(2):148–50.CrossRefPubMedGoogle Scholar
  82. 82.
    Zouboulis CC. Zileuton, a new efficient and safe systemic anti-acne drug. Dermatoendocrinol. 2009;1(3):188–92.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Alestas T, Ganceviciene R, Fimmel S, Müller-Decker K, Zouboulis CC. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84(1):75–87.CrossRefPubMedGoogle Scholar
  84. 84.
    Aslam I, Fleischer A, Feldman S. Emerging drugs for the treatment of acne. Expert Opin Emerg Drugs. 2015;20(1):91–101.CrossRefPubMedGoogle Scholar
  85. 85.
    Uto Y. Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. Chem Phys Lipids. 2016;197:3–12.CrossRefPubMedGoogle Scholar
  86. 86.
    Meingassner JG, Aschauer H, Winiski AP, Dales N, Yowe D, Winther MD, et al. Pharmacological inhibition of stearoyl CoA desaturase in the skin induces atrophy of the sebaceous glands. J Invest Dermatol. 2013;133(8):2091.CrossRefPubMedGoogle Scholar
  87. 87.
    Y Paul Goldberg, Xenon Pharmaceuticals Inc. A Phase 1 and 2 Randomized, Double-Blind, Vehicle-Controlled, Parallel-Group Study to Evaluate the Safety, Tolerability, Efficacy, and Exposure of up to 12 Weeks of XPF-005 Treatment in Healthy Volunteers and Subjects With Acne Vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  88. 88.
    Bissonnette R, Poulin Y, Drew J, Hofland H, Tan J. Olumacostat glasaretil, a novel topical sebum inhibitor, in the treatment of acne vulgaris: a phase IIa, multicenter, randomized, vehicle-controlled study. J Am Acad Dermatol. 2017;76(1):33–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Hunt DW, Winters GC, Brownsey RW, Kulpa JE, Gilliland KL, Thiboutot DM, et al. Inhibition of sebum production with the acetyl coenzyme a carboxylase inhibitor olumacostat glasaretil. J Invest Dermatol. 2017;137(7):1415–23.CrossRefPubMedGoogle Scholar
  90. 90.
    Beth Zib, Dermira, Inc. A randomized, double-blind, vehicle controlled, efficacy and safety study of olumacostat glasaretil gel in subjects with acne vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  91. 91.
    Jalian HR, Tam J, Vuong LN, Fisher J, Garibyan L, Mihm MC, et al. Selective cryolysis of sebaceous glands. J Invest Dermatol. 2015;135(9):2173–80.CrossRefGoogle Scholar
  92. 92.
    Li ZJ, Park SB, Sohn KC, Lee Y, Seo YJ, Kim CD, et al. Regulation of lipid production by acetylcholine signalling in human sebaceous glands. J Dermatol Sci. 2013;72(2):116–22.CrossRefPubMedGoogle Scholar
  93. 93.
    Anterios Inc. Clinical Trial To Evaluate Botulinum Neurotoxin Type A (ANT-1207) In Subjects With Acne [cited 10 Jul 2017]. Accessed 17 Jun 2017.
  94. 94.
    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Fuchs-Tarlovsky V, Marquez-Barba MF, Sriram K. Probiotics in dermatologic practice. Nutrition. 2016;32(3):289–95.CrossRefPubMedGoogle Scholar
  96. 96.
    Kramer S. Nitrosomonas eutropha: a Study of the effects of nitrosomonas on pathogenic bacterium and the effects of current hygiene habits on the colonization of nitrosomonas within our normal flora. JCCC Honors J. 2016;7(1):3.Google Scholar
  97. 97.
    Noah Craft, Science 37. A Randomized, Double Blinded, Phase IIb/III, Decentralized study of B244 delivered as a topical spray to determine safety and efficacy in participants with mild to moderate Acne Vulgaris [cited 10 Jul 2017]. Accessed 17 Jun 2017.

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity of MichiganAnn ArborUSA
  2. 2.School of MedicineUniversity of California-DavisSacramentoUSA
  3. 3.Department of DermatologyUniversity of California, DavisSacramentoUSA
  4. 4.Department of Biological SciencesCalifornia State UniversitySacramentoUSA

Personalised recommendations