American Journal of Clinical Dermatology

, Volume 20, Issue 3, pp 335–344 | Cite as

Acne, the Skin Microbiome, and Antibiotic Treatment

  • Haoxiang Xu
  • Huiying LiEmail author
Current Opinion


Acne vulgaris is a chronic skin disorder involving hair follicles and sebaceous glands. Multiple factors contribute to the disease, including skin microbes. The skin microbiome in the follicle is composed of a diverse group of microorganisms. Among them, Propionibacterium acnes and Malassezia spp. have been linked to acne development through their influence on sebum secretion, comedone formation, and inflammatory response. Antibiotics targeting P. acnes have been the mainstay in acne treatment for the past four decades. Among them, macrolides, clindamycin, and tetracyclines are the most widely prescribed. As antibiotic resistance becomes an increasing concern in clinical practice, understanding the skin microbiome associated with acne and the effects of antibiotic use on the skin commensals is highly relevant and critical to clinicians. In this review, we summarize recent studies of the composition and dynamics of the skin microbiome in acne and the effects of antibiotic treatment on skin microbes.



We thank He Yanyan, Zeng Rong, and Liu Yuzhen from Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC) for their input.

Compliance with Ethical Standards


This work was supported by National Institutes of Health (NIH) grant (R01GM099530) from National Institute of General Medical Sciences (NIGMS), National Nature Science Foundation of China (81703148, 81673087, 81502739), CAMS Innovation Fund for Medical Sciences (CIFMS 2016-I2 M-1-003), and Innovation Research on Critical Diseases (2016ZX320014).

Conflict of interest

The Regents of the University of California is the owner of three patent applications related to acne and/or healthy skin, which list H.L. as one of the inventors. H.L. is a co-founder and shareholder of SkinomiX Biosciences Inc. and Naked Biome Inc. H.X. states no conflict of interest.


  1. 1.
    White GM. Recent findings in the epidemiologic evidence, classification, and subtypes of acne vulgaris. J Am Acad Dermatol. 1998;39:S34–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Bhate K, Williams HC. Epidemiology of acne vulgaris. Br J Dermatol. 2013;168:474–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Karimkhani C, Dellavalle RP, Coffeng LE, Flohr C, Hay RJ, Langan SM, et al. Global skin disease morbidity and mortality: an update from the Global Burden of Disease study 2013. JAMA Dermatol. 2017;153:406–12.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Thiboutot D, Gollnick H, Bettoli V, Dreno B, Kang S, Leyden JJ, et al. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. J Am Acad Dermatol. 2009;60:S1–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Gollnick H, Cunliffe W, Berson D, Dreno B, Finlay A, Leyden JJ, et al. Management of acne: a report from a Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol. 2003;49:S1–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Barnard E, Li H. Shaping of cutaneous function by encounters with commensals. J Physiol. 2017;595:437–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346:954–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA. 2007;104:2927–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133:2152–60.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514:59–64.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Barnard E, Shi B, Kang D, Craft N, Li H. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep. 2016;6:39491.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, et al. Commensal microbiota modulate gene expression in the skin. Microbiome. 2018;6:20.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu J, Yan R, Zhong Q, Ngo S, Bangayan NJ, Nguyen L, et al. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin. ISME J. 2015;9:2078–93.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dekio I, Hayashi H, Sakamoto M, Kitahara M, Nishikawa T, Suematsu M, et al. Detection of potentially novel bacterial components of the human skin microbiota using culture-independent molecular profiling. J Med Microbiol. 2005;54:1231–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Leyden JJ, McGinley KJ, Nordstrom KM, Webster GF. Skin microflora. J Invest Dermatol. 1987;88:65s–72s.CrossRefPubMedGoogle Scholar
  18. 18.
    Unna PG. The histopathology of the diseases of the skin (Translated by N. Walker). New York: Macmillan & Co; 1896.Google Scholar
  19. 19.
    La Sabouraud H. seborrhee grasse et la pelade. Ann Inst Pasteur Lilly. 1897;11:134–59.Google Scholar
  20. 20.
    Douglas HC, Gunter SE. The taxonomic position of Corynebacterium acnes. J Bacteriol. 1946;52:15–23.PubMedPubMedCentralGoogle Scholar
  21. 21.
    McDowell A, Barnard E, Liu J, Li H, Patrick S. Emendation of Propionibacterium acnes subsp. acnes (Deiko et al. 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov. Int J Syst Evol Microbiol. 2016;66:5358–65.CrossRefPubMedGoogle Scholar
  22. 22.
    Scholz CF, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66:4422–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Alexeyev OA, Dekio I, Layton AM, Li H, Hughes H, Morris T, et al. Why we continue to use the name Propionibacterium acnes. Br J Dermatol. 2018;179:1227.CrossRefPubMedGoogle Scholar
  24. 24.
    Leyden JJ, McGinley KJ, Vowels B. Propionibacterium acnes colonization in acne and nonacne. Dermatology. 1998;196:55–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Perkins AC, Maglione J, Hillebrand GG, Miyamoto K, Kimball AB. Acne vulgaris in women: prevalence across the life span. J Womens Health (Larchmt). 2012;21:223–30.CrossRefGoogle Scholar
  26. 26.
    Collier CN, Harper JC, Cafardi JA, Cantrell WC, Wang W, Foster KW, et al. The prevalence of acne in adults 20 years and older. J Am Acad Dermatol. 2008;58:56–9.CrossRefPubMedGoogle Scholar
  27. 27.
    McGinley KJ, Webster GF, Ruggieri MR, Leyden JJ. Regional variations in density of cutaneous propionibacteria: correlation of Propionibacterium acnes populations with sebaceous secretion. J Clin Microbiol. 1980;12:672–5.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Iinuma K, Sato T, Akimoto N, Noguchi N, Sasatsu M, Nishijima S, et al. Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro. J Invest Dermatol. 2009;129:2113–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Saint-Leger D, Bague A, Cohen E, Chivot M. A possible role for squalene in the pathogenesis of acne. I. In vitro study of squalene oxidation. Br J Dermatol. 1986;114:535–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Burkhart CG, Burkhart CN. Expanding the microcomedone theory and acne therapeutics: Propionibacterium acnes biofilm produces biological glue that holds corneocytes together to form plug. J Am Acad Dermatol. 2007;57:722–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Jahns AC, Lundskog B, Ganceviciene R, Palmer RH, Golovleva I, Zouboulis CC, et al. An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol. 2012;167:50–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Jarrousse V, Castex-Rizzi N, Khammari A, Charveron M, Dreno B. Modulation of integrins and filaggrin expression by Propionibacterium acnes extracts on keratinocytes. Arch Dermatol Res. 2007;299:441–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Isard O, Knol AC, Aries MF, Nguyen JM, Khammari A, Castex-Rizzi N, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation. J Invest Dermatol. 2011;131:59–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169:1535–41.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nakatsuji T, Liu YT, Huang CP, Zouboulis CC, Gallo RL, Huang CM. Vaccination targeting a surface sialidase of P. acnes: implication for new treatment of acne vulgaris. PLoS One. 2008;3:51.CrossRefGoogle Scholar
  36. 36.
    Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, et al. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009;18:821–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Sugisaki H, Yamanaka K, Kakeda M, Kitagawa H, Tanaka K, Watanabe K, et al. Increased interferon-gamma, interleukin-12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease. J Dermatol Sci. 2009;55:47–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Scott DG, Cunliffe WJ, Gowland G. Activation of complement-a mechanism for the inflammation in acne. Br J Dermatol. 1979;101:315–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Terui T, Rokugo M, Kato T, Tagami H. Analysis of the proinflammatory property of epidermal cyst contents: chemotactic C5a anaphylatoxin generation. Arch Dermatol Res. 1989;281:31–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Li ZJ, Choi DK, Sohn KC, Seo MS, Lee HE, Lee Y, et al. Propionibacterium acnes activates the NLRP3 inflammasome in human sebocytes. J Invest Dermatol. 2014;134:2747–56.CrossRefPubMedGoogle Scholar
  41. 41.
    Puhvel SM, Reisner RM. The production of hyaluronidase (hyaluronate lyase) by Corynebacterium acnes. J Invest Dermatol. 1972;58:66–70.CrossRefPubMedGoogle Scholar
  42. 42.
    Hoeffler U. Enzymatic and hemolytic properties of Propionibacterium acnes and related bacteria. J Clin Microbiol. 1977;6:555–8.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ingham E, Holland KT, Gowland G, Cunliffe WJ. Purification and partial characterization of an acid phosphatase (EC produced by Propionibacterium acnes. J Gen Microbiol. 1980;118:59–65.PubMedGoogle Scholar
  44. 44.
    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y, et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013;8:e55380.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang Y, Dai A, Huang S, Kuo S, Shu M, Tapia CP, et al. Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300. Benef Microbes. 2014;5:161–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Kasimatis G, Fitz-Gibbon S, Tomida S, Wong M, Li H. Analysis of complete genomes of Propionibacterium acnes reveals a novel plasmid and increased pseudogenes in an acne associated strain. Biomed Res Int. 2013;2013:918320.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tomida S, Nguyen L, Chiu BH, Liu J, Sodergren E, Weinstock GM, et al. Pan-genome and comparative genome analyses of propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome. MBio. 2013;4:e00003–13.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Johnson JL, Cummins CS. Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica. J Bacteriol. 1972;109:1047–66.PubMedPubMedCentralGoogle Scholar
  50. 50.
    McDowell A, Perry AL, Lambert PA, Patrick S. A new phylogenetic group of Propionibacterium acnes. J Med Microbiol. 2008;57:218–24.CrossRefPubMedGoogle Scholar
  51. 51.
    McDowell A, Barnard E, Nagy I, Gao A, Tomida S, Li H, et al. An expanded multilocus sequence typing scheme for propionibacterium acnes: investigation of ‘pathogenic’, ‘commensal’ and antibiotic resistant strains. PLoS One. 2012;7:e41480.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lomholt HB, Kilian M. Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS One. 2010;5:e12277.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    McDowell A, Nagy I, Magyari M, Barnard E, Patrick S. The opportunistic pathogen Propionibacterium acnes: insights into typing, human disease, clonal diversification and CAMP factor evolution. PLoS One. 2013;8:e70897.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Barnard E, Liu J, Yankova E, Cavalcanti SM, Magalhaes M, Li H, et al. Strains of the Propionibacterium acnes type III lineage are associated with the skin condition progressive macular hypomelanosis. Sci Rep. 2016;6:31968.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Petersen RL, Scholz CF, Jensen A, Bruggemann H, Lomholt HB. Propionibacterium acnes phylogenetic type III is associated with progressive macular hypomelanosis. Eur J Microbiol Immunol (Bp). 2017;7:37–45.CrossRefGoogle Scholar
  56. 56.
    Johnson T, Kang D, Barnard E, Li H. Strain-level differences in porphyrin production and regulation in Propionibacterium acnes elucidate disease associations. mSphere. 2016;1:e00015–23.Google Scholar
  57. 57.
    Kang D, Shi B, Erfe MC, Craft N, Li H. Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Sci Transl Med. 2015;7:293ra103.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124:931–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8:2195–205.CrossRefPubMedGoogle Scholar
  60. 60.
    Agak GW, Kao S, Ouyang K, Qin M, Moon D, Butt A, et al. Phenotype and antimicrobial activity of Th17 cells induced by Propionibacterium acnes strains associated with healthy and acne skin. J Invest Dermatol. 2018;138:316–24.CrossRefPubMedGoogle Scholar
  61. 61.
    Yu Y, Champer J, Agak GW, Kao S, Modlin RL, Kim J. Different Propionibacterium acnes phylotypes induce distinct immune responses and express unique surface and secreted proteomes. J Invest Dermatol. 2016;136:2221–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol. 1975;30:381–5.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang Y, Kuo S, Shu M, Yu J, Huang S, Dai A, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014;98:411–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Christensen GJ, Scholz CF, Enghild J, Rohde H, Kilian M, Thurmer A, et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genom. 2016;17:152.CrossRefGoogle Scholar
  65. 65.
    Xia X, Li Z, Liu K, Wu Y, Jiang D, Lai Y. Staphylococcal LTA-induced miR-143 inhibits Propionibacterium acnes-mediated inflammatory response in skin. J Invest Dermatol. 2016;136:621–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Akaza N, Akamatsu H, Numata S, Yamada S, Yagami A, Nakata S, et al. Microorganisms inhabiting follicular contents of facial acne are not only Propionibacterium but also Malassezia spp. J Dermatol. 2016;43:906–11.CrossRefPubMedGoogle Scholar
  67. 67.
    Hu G, Wei YP, Feng J. Malassezia infection: is there any chance or necessity in refractory acne? Chin Med J (Engl). 2010;123:628–32.PubMedGoogle Scholar
  68. 68.
    Song YC, Hahn HJ, Kim JY, Ko JH, Lee YW, Choe YB, et al. Epidemiologic study of Malassezia yeasts in acne patients by analysis of 26S rDNA PCR-RFLP. Ann Dermatol. 2011;23:321–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Numata S, Akamatsu H, Akaza N, Yagami A, Nakata S, Matsunaga K. Analysis of facial skin-resident microbiota in Japanese acne patients. Dermatology. 2014;228:86–92.CrossRefPubMedGoogle Scholar
  70. 70.
    Akaza N, Akamatsu H, Takeoka S, Sasaki Y, Mizutani H, Nakata S, et al. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species. J Dermatol. 2012;39:613–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Katsuta Y, Iida T, Inomata S, Denda M. Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis. J Invest Dermatol. 2005;124:1008–13.CrossRefPubMedGoogle Scholar
  72. 72.
    Webster GF. Inflammation in acne vulgaris. J Am Acad Dermatol. 1995;33:247–53.CrossRefPubMedGoogle Scholar
  73. 73.
    Kesavan S, Walters CE, Holland KT, Ingham E. The effects of Malassezia on pro-inflammatory cytokine production by human peripheral blood mononuclear cells in vitro. Med Mycol. 1998;36:97–106.CrossRefPubMedGoogle Scholar
  74. 74.
    Akaza N, Akamatsu H, Takeoka S, Mizutani H, Nakata S, Matsunaga K. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes. Med Mycol. 2012;50:802–10.CrossRefPubMedGoogle Scholar
  75. 75.
    Dreno B, Thiboutot D, Gollnick H, Bettoli V, Kang S, Leyden JJ, et al. Antibiotic stewardship in dermatology: limiting antibiotic use in acne. Eur J Dermatol. 2014;24:330–4.PubMedGoogle Scholar
  76. 76.
    Skidmore R, Kovach R, Walker C, Thomas J, Bradshaw M, Leyden J, et al. Effects of subantimicrobial-dose doxycycline in the treatment of moderate acne. Arch Dermatol. 2003;139:459–64.CrossRefPubMedGoogle Scholar
  77. 77.
    Eichenfield LF, Krakowski AC, Piggott C, Del Rosso J, Baldwin H, Friedlander SF, et al. Evidence-based recommendations for the diagnosis and treatment of pediatric acne. Pediatrics. 2013;131(Suppl 3):S163–86.CrossRefPubMedGoogle Scholar
  78. 78.
    Goh CL, Abad-Casintahan F, Aw DC, Baba R, Chan LC, Hung NT, et al. South-East Asia study alliance guidelines on the management of acne vulgaris in South-East Asian patients. J Dermatol. 2015;42:945–53.CrossRefPubMedGoogle Scholar
  79. 79.
    Gollnick HP, Bettoli V, Lambert J, Araviiskaia E, Binic I, Dessinioti C, et al. A consensus-based practical and daily guide for the treatment of acne patients. J Eur Acad Dermatol Venereol. 2016;30:1480–90.CrossRefPubMedGoogle Scholar
  80. 80.
    Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74:945–973.e33.Google Scholar
  81. 81.
    Hayashi N, Akamatsu H, Iwatsuki K, Shimada-Omori R, Kaminaka C, Kurokawa I, et al. Japanese Dermatological Association Guidelines: guidelines for the treatment of acne vulgaris 2017. J Dermatol. 2018;45:898–935.CrossRefPubMedGoogle Scholar
  82. 82.
    Thiboutot DM, Dreno B, Abanmi A, Alexis AF, Araviiskaia E, Barona Cabal MI, et al. Practical management of acne for clinicians: an international consensus from the Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol. 2018;78:S1–S23.e21.CrossRefPubMedGoogle Scholar
  83. 83.
    Walsh TR, Efthimiou J, Dreno B. Systematic review of antibiotic resistance in acne: an increasing topical and oral threat. Lancet Infect Dis. 2016;16:e23–33.CrossRefPubMedGoogle Scholar
  84. 84.
    Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14:742–50.CrossRefPubMedGoogle Scholar
  85. 85.
    Sardana K, Gupta T, Kumar B, Gautam HK, Garg VK. Cross-sectional pilot study of antibiotic resistance in Propionibacterium Acnes strains in Indian acne patients using 16S-RNA polymerase chain reaction: a comparison among treatment modalities including antibiotics, benzoyl peroxide, and isotretinoin. Indian J Dermatol. 2016;61:45–52.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gonzalez R, Welsh O, Ocampo J, Hinojosa-Robles RM, Vera-Cabrera L, Delaney ML, et al. In vitro antimicrobial susceptibility of Propionibacterium acnes isolated from acne patients in northern Mexico. Int J Dermatol. 2010;49:1003–7.CrossRefPubMedGoogle Scholar
  87. 87.
    Kurokawa I, Nishijima S, Kawabata S. Antimicrobial susceptibility of Propionibacterium acnes isolated from acne vulgaris. Eur J Dermatol. 1999;9:25–8.PubMedGoogle Scholar
  88. 88.
    Lomholt HB, Kilian M. Clonality and anatomic distribution on the skin of antibiotic resistant and sensitive Propionibacterium acnes. Acta Derm Venereol. 2014;94:534–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Cunliffe WJ, Holland KT, Bojar R, Levy SF. A randomized, double-blind comparison of a clindamycin phosphate/benzoyl peroxide gel formulation and a matching clindamycin gel with respect to microbiologic activity and clinical efficacy in the topical treatment of acne vulgaris. Clin Ther. 2002;24:1117–33.CrossRefPubMedGoogle Scholar
  90. 90.
    Simonart T, Dramaix M. Treatment of acne with topical antibiotics: lessons from clinical studies. Br J Dermatol. 2005;153:395–403.CrossRefPubMedGoogle Scholar
  91. 91.
    Liu J, Cheng A, Bangayan NJ, Barnard E, Curd E, Craft N, et al. Draft genome sequences of Propionibacterium acnes type strain ATCC6919 and antibiotic-resistant strain HL411PA1. Genome Announc. 2014;2:e00740-14.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Giannopoulos L, Papaparaskevas J, Refene E, Daikos G, Stavrianeas N, Tsakris A. MLST typing of antimicrobial-resistant Propionibacterium acnes isolates from patients with moderate to severe acne vulgaris. Anaerobe. 2015;31:50–4.CrossRefPubMedGoogle Scholar
  93. 93.
    Ross JI, Snelling AM, Carnegie E, Coates P, Cunliffe WJ, Bettoli V, et al. Antibiotic-resistant acne: lessons from Europe. Br J Dermatol. 2003;148:467–78.CrossRefPubMedGoogle Scholar
  94. 94.
    El-Mahdy TS, Abdalla S, El-Domany R, Mohamed MS, Ross JI, Snelling AM. Detection of a new erm(X)-mediated antibiotic resistance in Egyptian cutaneous propionibacteria. Anaerobe. 2010;16:376–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Nakase K, Nakaminami H, Takenaka Y, Hayashi N, Kawashima M, Noguchi N. Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan. J Med Microbiol. 2014;63:721–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Ross JI, Snelling AM, Eady EA, Cove JH, Cunliffe WJ, Leyden JJ, et al. Phenotypic and genotypic characterization of antibiotic-resistant Propionibacterium acnes isolated from acne patients attending dermatology clinics in Europe, the U.S.A., Japan and Australia. Br J Dermatol. 2001;144:339–46.CrossRefPubMedGoogle Scholar
  97. 97.
    Grech I. Susceptibility profiles of Propionibacterium acnes isolated from patients with acne vulgaris. J Glob Antimicrob Resist. 2014;2:35–8.CrossRefPubMedGoogle Scholar
  98. 98.
    Mendoza N, Hernandez PO, Tyring SK, Haitz KA, Motta A. Antimicrobial susceptibility of Propionibacterium acnes isolates from acne patients in Colombia. Int J Dermatol. 2013;52:688–92.CrossRefPubMedGoogle Scholar
  99. 99.
    Luk NM, Hui M, Lee HC, Fu LH, Liu ZH, Lam LY, et al. Antibiotic-resistant Propionibacterium acnes among acne patients in a regional skin centre in Hong Kong. J Eur Acad Dermatol Venereol. 2013;27:31–6.CrossRefPubMedGoogle Scholar
  100. 100.
    Schafer F, Fich F, Lam M, Garate C, Wozniak A, Garcia P. Antimicrobial susceptibility and genetic characteristics of Propionibacterium acnes isolated from patients with acne. Int J Dermatol. 2013;52:418–25.CrossRefPubMedGoogle Scholar
  101. 101.
    Jackson JM, Fu JJ, Almekinder JL. A randomized, investigator-blinded trial to assess the antimicrobial efficacy of a benzoyl peroxide 5%/clindamycin phosphate 1% gel compared with a clindamycin phosphate 1.2%/tretinoin 0.025% gel in the topical treatment of acne vulgaris. J Drugs Dermatol. 2010;9:131–6.PubMedGoogle Scholar
  102. 102.
    Dumont-Wallon G, Moyse D, Blouin E, Dreno B. Bacterial resistance in French acne patients. Int J Dermatol. 2010;49:283–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Nakase K, Nakaminami H, Takenaka Y, Hayashi N, Kawashima M, Noguchi N. Propionibacterium acnes is developing gradual increase in resistance to oral tetracyclines. J Med Microbiol. 2017;66:8–12.CrossRefPubMedGoogle Scholar
  104. 104.
    Nishijima S, Kurokawa I, Katoh N, Watanabe K. The bacteriology of acne vulgaris and antimicrobial susceptibility of Propionibacterium acnes and Staphylococcus epidermidis isolated from acne lesions. J Dermatol. 2000;27:318–23.CrossRefPubMedGoogle Scholar
  105. 105.
    Harkaway KS, McGinley KJ, Foglia AN, Lee WL, Fried F, Shalita AR, et al. Antibiotic resistance patterns in coagulase-negative staphylococci after treatment with topical erythromycin, benzoyl peroxide, and combination therapy. Br J Dermatol. 1992;126:586–90.CrossRefPubMedGoogle Scholar
  106. 106.
    Mills O Jr, Thornsberry C, Cardin CW, Smiles KA, Leyden JJ. Bacterial resistance and therapeutic outcome following three months of topical acne therapy with 2% erythromycin gel versus its vehicle. Acta Derm Venereol. 2002;82:260–5.CrossRefPubMedGoogle Scholar
  107. 107.
    Toossi P, Farshchian M, Malekzad F, Mohtasham N, Kimyai-Asadi A. Subantimicrobial-dose doxycycline in the treatment of moderate facial acne. J Drugs Dermatol. 2008;7:1149–52.PubMedGoogle Scholar
  108. 108.
    Kelhala HL, Aho VTE, Fyhrquist N, Pereira PAB, Kubin ME, Paulin L, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne. Exp Dermatol. 2018;27:30–6.CrossRefPubMedGoogle Scholar
  109. 109.
    Leyden JJ, Sniukiene V, Berk DR, Kaoukhov A. Efficacy and safety of sarecycline, a novel, once-daily, narrow spectrum antibiotic for the treatment of moderate to severe facial acne vulgaris: results of a phase 2, dose-ranging study. J Drugs Dermatol. 2018;17:333–8.PubMedGoogle Scholar
  110. 110.
    Adler BL, Kornmehl H, Armstrong AW. Antibiotic resistance in acne treatment. JAMA Dermatol. 2017;153:810–1.CrossRefPubMedGoogle Scholar
  111. 111.
    Nast A, Dreno B, Bettoli V, Bukvic Mokos Z, Degitz K, Dressler C, et al. European evidence-based (S3) guideline for the treatment of acne+update 2016-short version. J Eur Acad Dermatol Venereol. 2016;30:1261–8.CrossRefPubMedGoogle Scholar
  112. 112.
    Sinnott SJ, Bhate K, Margolis DJ, Langan SM. Antibiotics and acne: an emerging iceberg of antibiotic resistance? Br J Dermatol. 2016;175:1127–8.CrossRefPubMedGoogle Scholar
  113. 113.
    Bienenfeld A, Nagler AR, Orlow SJ. Oral antibacterial therapy for acne vulgaris: an evidence-based review. Am J Clin Dermatol. 2017;18:469–90.CrossRefPubMedGoogle Scholar
  114. 114.
    Lee YH, Liu G, Thiboutot DM, Leslie DL, Kirby JS. A retrospective analysis of the duration of oral antibiotic therapy for the treatment of acne among adolescents: investigating practice gaps and potential cost-savings. J Am Acad Dermatol. 2014;71:70–6.CrossRefPubMedGoogle Scholar
  115. 115.
    Straight CE, Lee YH, Liu G, Kirby JS. Duration of oral antibiotic therapy for the treatment of adult acne: a retrospective analysis investigating adherence to guideline recommendations and opportunities for cost-savings. J Am Acad Dermatol. 2015;72:822–7.CrossRefPubMedGoogle Scholar
  116. 116.
    Wang Y, Hata TR, Tong YL, Kao MS, Zouboulis CC, Gallo RL, et al. The anti-inflammatory activities of Propionibacterium acnes CAMP factor-targeted acne vaccines. J Invest Dermatol. 2018;138:2355–64.CrossRefPubMedGoogle Scholar
  117. 117.
    Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, Villarino AV, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172(784–796):e718.Google Scholar
  118. 118.
    Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv. 2018;4:eaao4502.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9:eaah4680.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
  3. 3.UCLA-DOE Institute for Genomics and ProteomicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations