The Role of Micronutrients in Alopecia Areata: A Review

Abstract

Alopecia areata (AA) is a common, non-scarring form of hair loss caused by immune-mediated attack of the hair follicle. As with other immune-mediated diseases, a complex interplay between environment and genetics is thought to lead to the development of AA. Deficiency of micronutrients such as vitamins and minerals may represent a modifiable risk factor associated with development of AA. Given the role of these micronutrients in normal hair follicle development and in immune cell function, a growing number of investigations have sought to determine whether serum levels of these nutrients might differ in AA patients, and whether supplementation of these nutrients might represent a therapeutic option for AA. While current treatment often relies on invasive steroid injections or immunomodulating agents with potentially harmful side effects, therapy by micronutrient supplementation, whether as a primary modality or as adjunctive treatment, could offer a promising low-risk alternative. However, our review highlights a need for further research in this area, given that the current body of literature largely consists of small case–control studies and case reports, which preclude any definite conclusions for a role of micronutrients in AA. In this comprehensive review of the current literature, we found that serum vitamin D, zinc, and folate levels tend to be lower in patients with AA as compared to controls. Evidence is conflicting or insufficient to suggest differences in levels of iron, vitamin B12, copper, magnesium, or selenium. A small number of studies suggest that vitamin A levels may modify the disease. Though understanding of the role for micronutrients in AA is growing, definitive clinical recommendations such as routine serum level testing or therapeutic supplementation call for additional studies in larger populations and with a prospective design.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bronsnick T, Murzaku EC, Rao BK. Diet in dermatology: part I. Atopic dermatitis, acne, and nonmelanoma skin cancer. J Am Acad Dermatol. 2014;71:1039.e1–12. doi:10.1016/j.jaad.2014.06.015.

    CAS  Article  Google Scholar 

  2. 2.

    Murzaku EC, Bronsnick T, Rao BK. Diet in dermatology: part II. Melanoma, chronic urticaria, and psoriasis. J Am Acad Dermatol. 2014;71:1053.e1–16. doi:10.1016/j.jaad.2014.06.016.

    Article  Google Scholar 

  3. 3.

    Villasante Fricke AC, Miteva M. Epidemiology and burden of alopecia areata: a systematic review. Clin Cosmet Investig Dermatol. 2015;8:397–403. doi:10.2147/CCID.S53985.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Liu LY, King BA, Craiglow BG. Health-related quality of life (HRQoL) among patients with alopecia areata (AA): a systematic review. J Am Acad Dermatol. 2016. doi:10.1016/j.jaad.2016.04.035.

    Google Scholar 

  5. 5.

    Islam N, Leung PSC, Huntley AC, Gershwin ME. The autoimmune basis of alopecia areata: a comprehensive review. Autoimmun Rev. 2015;14:81–9. doi:10.1016/j.autrev.2014.10.014.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Alkhalifah A, Alsantali A, Wang E, et al. Alopecia areata update: part II. Treatment. J Am Acad Dermatol. 2010;62:191–202. doi:10.1016/j.jaad.2009.10.031 (quiz 203–4).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mason JB. 218—vitamins, trace minerals, and other micronutrients, twenty fifth edition. Goldman-Cecil Med. 2016;2:1445.e1–1455.e1. doi:10.1016/B978-1-4557-5017-7.00218-X.

    Google Scholar 

  8. 8.

    Handjiski BK, Eichmüller S, Hofmann U, et al. Alkaline phosphatase activity and localization during the murine hair cycle. Br J Dermatol. 1994;131:303–10.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Prie BE, Voiculescu VM, Ionescu-Bozdog OB, et al. Oxidative stress and alopecia areata. J Med Life. 2015;8(Spec Issue):43–6.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Antico A, Tampoia M, Tozzoli R, Bizzaro N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 2012;12:127–36. doi:10.1016/j.autrev.2012.07.007.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466:113–7. doi:10.1038/nature09114.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. doi:10.1056/NEJMra070553.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80:1678S–88S.

    CAS  PubMed  Google Scholar 

  14. 14.

    Forrest KYZ, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res. 2011;31:48–54. doi:10.1016/j.nutres.2010.12.001.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ross AC, Taylor CL, Yaktine AL, Del Valle HB. Dietary Reference Intakes for Calcium and Vitamin D. Report from the Institute of Medicine of the National Academy of Sciences. Washington (DC): National Academies Press; 2011. pp. 1-4.

  16. 16.

    Giovannucci E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control. 2005;16:83–95. doi:10.1007/s10552-004-1661-4.

    Article  PubMed  Google Scholar 

  17. 17.

    Visser M, Deeg DJH, Lips P, Longitudinal Aging Study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. 2003;88:5766–72. doi:10.1210/jc.2003-030604.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Rostand SG. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1997;30:150–6.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wang L, Song Y, Manson JE, et al. Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: a meta-analysis of prospective studies. Circ Cardiovasc Qual Outcomes. 2012;5:819–29. doi:10.1161/CIRCOUTCOMES.112.967604.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Song Y, Wang L, Pittas AG, et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2013;36:1422–8. doi:10.2337/dc12-0962.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Aguado P, del Campo MT, Garcés MV, et al. Low vitamin D levels in outpatient postmenopausal women from a rheumatology clinic in Madrid, Spain: their relationship with bone mineral density. Osteoporos Int. 2000;11:739–44. doi:10.1007/s001980070052.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kamen DL, Cooper GS, Bouali H, et al. Vitamin D deficiency in systemic lupus erythematosus. Autoimmun Rev. 2006;5:114–7. doi:10.1016/j.autrev.2005.05.009.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Munger KL, Zhang SM, OReilly E, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62:60–5.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Chaudhary S, Dutta D, Kumar M, et al. Vitamin D supplementation reduces thyroid peroxidase antibody levels in patients with autoimmune thyroid disease: an open-labeled randomized controlled trial. Indian J Endocrinol Metab. 2016;20:391–8. doi:10.4103/2230-8210.179997.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Reichrath J, Schilli M, Kerber A, et al. Hair follicle expression of 1,25-dihydroxyvitamin D3 receptors during the murine hair cycle. Br J Dermatol. 1994;131:477–82.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Xie Z, Komuves L, Yu Q-C, et al. Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth. J Investig Dermatol. 2002;118:11–6. doi:10.1046/j.1523-1747.2002.01644.x.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Chen CH, Sakai Y, Demay MB. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology. 2001;142:5386–9. doi:10.1210/endo.142.12.8650.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Sakai Y, Kishimoto J, Demay MB. Metabolic and cellular analysis of alopecia in vitamin D receptor knockout mice. J Clin Invest. 2001;107:961–6. doi:10.1172/JCI11676.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Takeda E, Kuroda Y, Saijo T, et al. 1 alpha-hydroxyvitamin D3 treatment of three patients with 1,25-dihydroxyvitamin D-receptor-defect rickets and alopecia. Pediatrics. 1987;80:97–101.

    CAS  PubMed  Google Scholar 

  30. 30.

    Malloy PJ, Pike JW, Feldman D. The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev. 1999;20:156–88. doi:10.1210/edrv.20.2.0359.

    CAS  PubMed  Google Scholar 

  31. 31.

    Forghani N, Lum C, Krishnan S, et al. Two new unrelated cases of hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia resulting from the same novel nonsense mutation in the vitamin D receptor gene. J Pediatr Endocrinol Metab. 2010;23:843–50.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Aksu Cerman A, Sarikaya Solak S, Kivanc Altunay I. Vitamin D deficiency in alopecia areata. Br J Dermatol. 2014;170:1299–304. doi:10.1111/bjd.12980.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Mahamid M, Abu-Elhija O, Samamra M, et al. Association between vitamin D levels and alopecia areata. Isr Med Assoc J. 2014;16:367–70.

    PubMed  Google Scholar 

  34. 34.

    d’Ovidio R, Vessio M, d’Ovidio FD. Reduced level of 25-hydroxyvitamin D in chronic/relapsing Alopecia Areata. Dermatoendocrinol. 2013;5:271–3. doi:10.4161/derm.24411.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yilmaz N, Serarslan G, Gokce C. Vitamin D concentrations are decreased in patients with alopecia areata. VTE. 2012;01:1–4. doi:10.4172/2167-0390.1000105.

    Article  Google Scholar 

  36. 36.

    Akar A, Orkunoglu FE, Ozata M, et al. Lack of association between vitamin D receptor FokI polymorphism and alopecia areata. Eur J Dermatol. 2004;14:156–8.

    CAS  PubMed  Google Scholar 

  37. 37.

    Akar A, Orkunoglu FE, Tunca M, et al. Vitamin D receptor gene polymorphisms are not associated with alopecia areata. Int J Dermatol. 2007;46:927–9. doi:10.1111/j.1365-4632.2007.03140.x.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Çerman AA, Solak SS, Altunay İ, Küçükünal NA. Topical calcipotriol therapy for mild-to-moderate alopecia areata: a retrospective study. J Drugs Dermatol. 2015;14:616–20.

    PubMed  Google Scholar 

  39. 39.

    Kim DH, Lee JW, Kim IS, et al. Successful treatment of alopecia areata with topical calcipotriol. Ann Dermatol. 2012;24:341–4. doi:10.5021/ad.2012.24.3.341.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Orecchia G, Rocchetti GA. Topical use of calcipotriol does not potentiate squaric acid dibutylester effectiveness in the treatment of alopecia areata. J Dermatol Treat. 2009;6:21–3. doi:10.3109/09546639509080585.

    Article  Google Scholar 

  41. 41.

    Berth-Jones J, Hutchinson PE. Alopecia totalis does not respond to the vitamin-D analogue calcipotriol. J Dermatol Treat. 2009;1:293–4. doi:10.3109/09546639109086760.

    Article  Google Scholar 

  42. 42.

    Fawzi MMT, Mahmoud SB, Ahmed SF, Shaker OG. Assessment of vitamin D receptors in alopecia areata and androgenetic alopecia. J Cosmet Dermatol. 2016;15:318–23. doi:10.1111/jocd.12224.

    Article  PubMed  Google Scholar 

  43. 43.

    Bakry OA, El Farargy SM, El Shafiee MK, Soliman A. Serum vitamin D in patients with alopecia areata. Indian Dermatol Online J. 2016;7:371–7. doi:10.4103/2229-5178.190504.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Narang T, Daroach M, Kumaran MS. Efficacy and safety of topical calcipotriol in management of alopecia areata: a pilot study. Dermatol Ther. 2017;88:e12464. doi:10.1111/dth.12464.

    Article  Google Scholar 

  45. 45.

    Ban Y, Taniyama M. Vitamin D receptor gene polymorphism is associated with Graves’ disease in the Japanese population. J Clin Endocrinol Metab. 2000;85:4639–43. doi:10.1210/jcem.85.12.7038.

    CAS  PubMed  Google Scholar 

  46. 46.

    Saeki H, Asano N, Tsunemi Y, et al. Polymorphisms of vitamin D receptor gene in Japanese patients with psoriasis vulgaris. J Dermatol Sci. 2002;30:167–71.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Thompson JM, Li T, Park MK, et al. Estimated serum vitamin D status, vitamin D intake, and risk of incident alopecia areata among US women. Arch Dermatol Res. 2016. doi:10.1007/s00403-016-1687-y.

    PubMed  Google Scholar 

  48. 48.

    Vissers WHPM, Berends M, Muys L, et al. The effect of the combination of calcipotriol and betamethasone dipropionate versus both monotherapies on epidermal proliferation, keratinization and T-cell subsets in chronic plaque psoriasis. Exp Dermatol. 2004;13:106–12. doi:10.1111/j.0906-6705.2004.00151.x.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Rizova E, Corroller M. Topical calcitriol—studies on local tolerance and systemic safety. Br J Dermatol. 2001;144(Suppl 58):3–10.

    CAS  PubMed  Google Scholar 

  50. 50.

    MacDonald Hull SP, Wood ML, Hutchinson PE, et al. Guidelines for the management of alopecia areata. Br J Dermatol. 2003;149:692–9.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Report from the Institute of Medicine of the National Academy of Sciences. Washington (DC): National Academies Press; 2001. pp. 82–83,443. doi:10.17226/10026.

  52. 52.

    Finner AM. Nutrition and hair: deficiencies and supplements. Dermatol Clin. 2013;31:167–72. doi:10.1016/j.det.2012.08.015.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Abdel Fattah NSA, Atef MM, Al-Qaradaghi SMQ. Evaluation of serum zinc level in patients with newly diagnosed and resistant alopecia areata. Int J Dermatol. 2016;55:24–9. doi:10.1111/ijd.12769.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Kil MS, Kim CW, Kim SS. Analysis of serum zinc and copper concentrations in hair loss. Ann Dermatol. 2013;25:405. doi:10.5021/ad.2013.25.4.405.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Bhat YJ, Manzoor S, Khan AR, Qayoom S. Trace element levels in alopecia areata. Indian J Dermatol Venereol Leprol. 2009;75:29–31.

    Article  PubMed  Google Scholar 

  56. 56.

    Amirnia M, Sinafar S, Sinafar H, Nuri M. Assessment of zinc and copper contents in the hair and serum and also superoxide dismutase, glutathion peroxidase and malondi aldehyde in serum in androgenetic alopecia and alopecia areata. Life Sci J. 2013;10:204–9.

    Google Scholar 

  57. 57.

    Dastgheib L, Mostafavi-pour Z, Abdorazagh AA, et al. Comparison of Zn, Cu, and Fe content in hair and serum in alopecia areata patients with normal group. Dermatol Res Pract. 2014;2014:1–5. doi:10.1155/2014/784863.

    Article  Google Scholar 

  58. 58.

    Mussalo-Rauhamaa H, Lakomaa EL, Kianto U, Lehto J. Element concentrations in serum, erythrocytes, hair and urine of alopecia patients. Acta Derm Venereol. 1986;66:103–9.

    CAS  PubMed  Google Scholar 

  59. 59.

    Ead RD. Oral zinc sulphate in alopacia areata—a double blind trial. Br J Dermatol. 1981;104:483–4. doi:10.1111/j.1365-2133.1981.tb15323.x.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Park H, Kim CW, Kim SS, Park CW. The therapeutic effect and the changed serum zinc level after zinc supplementation in alopecia areata patients who had a low serum zinc level. Ann Dermatol. 2009;21:142–6. doi:10.5021/ad.2009.21.2.142.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Camacho FM, García-Hernández MJ. Zinc aspartate, biotin, and clobetasol propionate in the treatment of alopecia areata in childhood. Pediatr Dermatol. 1999;16:336–8.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Lux-Battistelli C. Combination therapy with zinc gluconate and PUVA for alopecia areata totalis: an adjunctive but crucial role of zinc supplementation. Dermatol Ther. 2015;28:235–8. doi:10.1111/dth.12215.

    Article  PubMed  Google Scholar 

  63. 63.

    Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Report from the Institute of Medicine of the National Academy of Sciences. Washington DC: National Academies Press; 2000. pp. 285, 325–326. doi:10.17226/9810.

  64. 64.

    Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Report from the Institute of Medicine of the National Academy of Sciences. Washington DC: National Academies Press; 1997. pp. 190–191. doi:10.17226/5776.

  65. 65.

    Feizy V, Mortazavi H, Barikbin B, et al. Serum selenium level in Iranian patients with alopecia areata. J Eur Acad Dermatol Venereol. 2008;22:1259–60. doi:10.1111/j.1468-3083.2008.02612.x.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    World Health Organization, Centers for Disease Control and Prevention, Prevention. Assessing the iron status of populations. 2nd ed. Geneva: World Health Organization; 2004.

    Google Scholar 

  67. 67.

    Trost LB, Bergfeld WF, Calogeras E. The diagnosis and treatment of iron deficiency and its potential relationship to hair loss. J Am Acad Dermatol. 2006;54:824–44. doi:10.1016/j.jaad.2005.11.1104.

    Article  PubMed  Google Scholar 

  68. 68.

    Kantor J, Kessler LJ, Brooks DG, Cotsarelis G. Decreased serum ferritin is associated with alopecia in women. J Investig Dermatol. 2003;121:985–8. doi:10.1046/j.1523-1747.2003.12540.x.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Walters GO, Miller FM, Worwood M. Serum ferritin concentration and iron stores in normal subjects. J Clin Pathol. 1973;26:770–2. doi:10.1136/jcp.26.10.770.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Boffa MJ, Wood P, Griffiths CE. Iron status of patients with alopecia areata. Br J Dermatol. 1995;132:662–4.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    White MI, Currie J, Williams MP. A study of the tissue iron status of patients with alopecia areata. Br J Dermatol. 1994;130:261–3.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Gonul M, Cakmak S, Soylu S, et al. Serum vitamin B12, folate, ferritin, and iron levels in Turkish patients with alopecia areata. Indian J Dermatol Venereol Leprol. 2009;75:552. doi:10.4103/0378-6323.55430.

    Article  PubMed  Google Scholar 

  73. 73.

    Tzellos TG, Tahmatzidis DK, Lallas A, et al. Pernicious anemia in a patient with type 1 diabetes mellitus and alopecia areata universalis. J Diabetes Complic. 2009;23:434–7. doi:10.1016/j.jdiacomp.2008.05.003.

    Article  Google Scholar 

  74. 74.

    Esfandiarpour I, Farajzadeh S, Abbaszadeh M. Evaluation of serum iron and ferritin levels in alopecia areata. Dermatol Online J. 2008;14:21.

  75. 75.

    Hugh Rushton D, Ramsay ID. The importance of adequate serum ferritin levels during oral cyproterone acetate and ethinyl oestradiol treatment of diffuse androgen-dependent alopecia in women. Clin Endocrinol (Oxf). 1992;36:421–7. doi:10.1111/j.1365-2265.1992.tb01470.x.

    Article  Google Scholar 

  76. 76.

    Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Report from the Institute of Medicine of the National Academy of Sciences. Washington DC: National Academies Press; 1998. pp. 306-307, 313. doi:10.17226/6015.

  77. 77.

    Hunt A, Harrington D, Robinson S. Vitamin B12 deficiency. BMJ. 2014;349:g5226.

    Article  PubMed  Google Scholar 

  78. 78.

    Yousefi M, Shakoei S, Namazi M, et al. Evaluation of serum homocysteine, high-sensitivity CRP, and RBC folate in patients with alopecia areata. Indian J Dermatol. 2014;59:630. doi:10.4103/0019-5154.143567.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Ertugrul DT, Karadag AS, Takci Z, et al. Serum holotranscobalamine, vitamin B12, folic acid and homocysteine levels in alopecia areata patients. Cutan Ocul Toxicol. 2013;32:1–3. doi:10.3109/15569527.2012.683499.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Kalkan G, Yigit S, Karakuş N, et al. Methylenetetrahydrofolate reductase C677T mutation in patients with alopecia areata in Turkish population. Gene. 2013;530:109–12. doi:10.1016/j.gene.2013.08.016.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Zafad S, Madani A, Harif M, et al. Pernicious anemia associated with autoimmune hemolytic anemia and alopecia areata. Pediatr Blood Cancer. 2007;49:1017–8. doi:10.1002/pbc.20896.

    Article  PubMed  Google Scholar 

  82. 82.

    Mao R, Fan Y, Zuo L, et al. Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves’ disease. Cell Biochem Funct. 2010;28:585–90. doi:10.1002/cbf.1694.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Klotz L, Farkas M, Bain N, et al. The variant methylenetetrahydrofolate reductase c.1298A>C (p. E429A) is associated with multiple sclerosis in a German case–control study. Neurosci Lett. 2010;468:183–5. doi:10.1016/j.neulet.2009.10.057.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Osborne D, Sobczyńska-Malefora A. Autoimmune mechanisms in pernicious anaemia and thyroid disease. Autoimmun Rev. 2015;14:763–8. doi:10.1016/j.autrev.2015.04.011.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    McMahon RJ. Biotin in metabolism and molecular biology. Annu Rev Nutr. 2002;22:221–39. doi:10.1146/annurev.nutr.22.121101.112819.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Goldberg LJ, Lenzy Y. Nutrition and hair. Clin Dermatol. 2010;28:412–9. doi:10.1016/j.clindermatol.2010.03.038.

    Article  PubMed  Google Scholar 

  87. 87.

    Colombo VE, Gerber F, Bronhofer M, Floersheim GL. Treatment of brittle fingernails and onychoschizia with biotin: scanning electron microscopy. J Am Dermatol. 1990;23:1127–32. doi:10.1016/0190-9622(90)70345-I.

    CAS  Article  Google Scholar 

  88. 88.

    Knight JA. Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30:145–58.

    CAS  PubMed  Google Scholar 

  89. 89.

    Naziroglu M, Kokcam I. Antioxidants and lipid peroxidation status in the blood of patients with alopecia. Cell Biochem Funct. 2000;18:169–73. doi:10.1002/1099-0844(200009)18:3<169:AID-CBF870>3.0.CO;2-T.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Ramadan R, Tawdy A, Abdel Hay R, et al. The antioxidant role of paraoxonase 1 and vitamin E in three autoimmune diseases. Skin Pharmacol Physiol. 2013;26:2–7. doi:10.1159/000342124.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Holler PD, Cotsarelis G. Retinoids putting the “A” in alopecia. J Investig Dermatol. 2013;133:285–6. doi:10.1038/jid.2012.441.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8:685–98. doi:10.1038/nri2378.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Duncan FJ, Silva KA, Johnson CJ, et al. Endogenous retinoids in the pathogenesis of alopecia areata. J Investig Dermatol. 2013;133:334–43. doi:10.1038/jid.2012.344.

    Article  PubMed  Google Scholar 

  94. 94.

    Suo L, Sundberg JP, Everts HB. Dietary vitamin A regulates wingless-related MMTV integration site signaling to alter the hair cycle. Exp Biol Med (Maywood). 2015;240:618–23. doi:10.1177/1535370214557220.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eunyoung Cho.

Ethics declarations

Conflict of interest

Dr. Qureshi serves as a consultant for Abbvie, Amgen, the Centers for Disease Control and Prevention, Janssen, Merck, Novartis, and Pfizer, and is an investigator for Amgen, Regeneron, and Sanofi. Mr. Thompson, Ms. Mirza, Dr. Park, and Dr. Cho have no conflicts of interest.

Funding

This work was funded by the Ruth Sauber Medical Scholar Award of Alpert Medical School, Brown University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thompson, J.M., Mirza, M.A., Park, M.K. et al. The Role of Micronutrients in Alopecia Areata: A Review. Am J Clin Dermatol 18, 663–679 (2017). https://doi.org/10.1007/s40257-017-0285-x

Download citation

Keywords

  • Hair Loss
  • Alopecia Areata
  • Calcipotriol
  • Serum Zinc Level
  • Squaric Acid