Skip to main content
Log in

Evaluation of Oxidant–Antioxidant Balance in Children with Atopic Dermatitis: A Case–Control Study

  • Original Research Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Background

Increased reactive oxygen species (ROS) and oxidative stress (OS) has been reported in many allergic and inflammatory skin diseases, including urticaria, psoriasis, and atopic dermatitis (AD). Melatonin is a hormone secreted from the pineal gland and is a potent antioxidant.

Objective

The aim of the study was to measure serum antioxidant melatonin, oxidants of nitric oxide (NO), and malondialdehyde levels to calculate the serum oxidant–antioxidant balance based on the NO/melatonin and malondialdehyde/melatonin ratios and to determine the correlation with the disease severity in children with AD.

Methods

Seventy-three children with AD and 67 healthy controls were included in the study. The clinical diagnosis of AD was based on the diagnostic criteria of Hanifin-Rajka. The severity of AD was evaluated by the scoring AD (SCORAD) index, and atopy was determined by skin prick tests (SPTs) with commercial extracts. The OS-related parameters of serum melatonin, NO, malondialdehyde, and the NO/melatonin and malondialdehyde/melatonin ratios were calculated and compared with the results of healthy controls.

Results

Serum melatonin levels were higher (p < 0.0001) and serum NO levels and the NO/melatonin and malondialdehyde/melatonin ratios were lower in children with AD than in healthy controls (p = 0.045, p < 0.0001, p < 0.0001, respectively). There was no difference between children with AD and healthy controls in terms of serum malondialdehyde levels (p = 0.119). Serum melatonin levels were significantly lower in severe AD than in mild AD (p = 0.012). However, in terms of serum melatonin levels, there was no difference between mild and moderate AD (p = 0.742) and moderate to severe AD (p = 0.301). There was no significant difference in serum NO and malondialdehyde levels and NO/melatonin and malondialdehyde/melatonin ratios among children with mild, moderate, and severe AD (p > 0.05). A negative correlation was found between serum melatonin levels and the SCORAD index (r = −0.252, p = 0.031), and a positive correlation was found between NO/melatonin and malondialdehyde/melatonin ratios (r = 0.511, p < 0.0001). There was no statistically significant relationship between age (≤24 or >24 months), disease duration (≤6 or >6 months), and sex for the OS-related parameters (p > 0.05).

Conclusion

The serum oxidant–antioxidant balance was impaired in children with AD. Serum melatonin levels were higher in children with AD; however, this was negatively correlated with disease severity. Serum NO levels and NO/melatonin and malondialdehyde/melatonin ratios were lower in children with AD than in healthy controls. Melatonin might be used as a promising antioxidant to evaluate disease severity in children with AD. Thus, further studies are needed to clarify the role of melatonin in AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol. 2000;105(5):860–76.

    Article  CAS  PubMed  Google Scholar 

  2. Braback L, Hjern A, Rasmussen F. Trends in asthma, allergic rhinitis and eczema among Swedish conscripts from farming and non-farming environments. A nationwide study over three decades. Clin Exp Allergy. 2004;34:38–43.

    Article  CAS  PubMed  Google Scholar 

  3. Arkwright PD, Motala C, Subramanian H, et al. Atopic Dermatitis Working Group of the Allergic Skin Diseases Committee of the AAAAI. Management of difficult-to-treat atopic dermatitis. J Allergy Clin Immunol Pract 2013;1(2):142-51.

  4. Grewe M, Bruijnzeel-Koomen CA, Schöpf E, et al. A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today. 1998;19:359–61.

    Article  CAS  PubMed  Google Scholar 

  5. Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr Drug Targets Inflamm Allergy. 2005;4(4):517–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kruk J, Duchnik E. Oxidative stress and skin diseases: possible role of physical activity. Asian Pac J Cancer Prev. 2014;15(2):561–8.

    Article  PubMed  Google Scholar 

  7. Yesilova Y, Ucmak D, Selek S, et al. Oxidative stress index may play a key role in patients with pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2013;27(4):465–7.

    Article  CAS  PubMed  Google Scholar 

  8. Aly DG, Shahin RS. Oxidative stress in lichen planus. Acta Dermatovenerol Alp Pannonica Adriat. 2010;19(1):3–11.

    CAS  PubMed  Google Scholar 

  9. Nakai K, Yoneda K, Kubota Y. Oxidative stress in allergic and irritant dermatitis: from basic research to clinical management. Recent Pat Inflamm Allergy Drug Discov. 2012;6(3):202–9.

    Article  CAS  PubMed  Google Scholar 

  10. Halliwell B. Biochemistry of oxidative stress. Biochemical Society Transactions. 2007;35:1147–50.

    Article  CAS  PubMed  Google Scholar 

  11. Pastore S, Korkina L. Redox imbalance in T cell-mediated skin diseases. Mediators Inflammation. 2010;2010:861949.

    Article  Google Scholar 

  12. Marseglia L, D’Angelo G, Manti S, et al. Melatonin and atopy: role in atopic dermatitis and asthma. Int J Mol Sci. 2014;15(8):13482–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reiter RJ. Melatonin: clinical relevance. Best Pract Res Clin Endocrinol Metab. 2003;17:273–85.

    Article  CAS  PubMed  Google Scholar 

  14. Bob P, Fedor-Freybergh P. Melatonin, consciousness, and traumatic stress. J Pineal Res. 2008;44:341–7.

    Article  CAS  PubMed  Google Scholar 

  15. Slominski A, Tobin DJ, Zmijewski MA, et al. Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol Metab. 2008;19(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  16. Tan DX, Manchester LC, Terron MP, et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42.

    Article  CAS  PubMed  Google Scholar 

  17. Bharti VK, Srivastava RS. Pineal proteins upregulate specific antioxidant defense systems in the brain. Oxid Med Cell Longev. 2009;2:88–92.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reiter RJ, Tan DX, Gitto E, et al. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol J Pharmacol. 2004;56:159–70.

    CAS  PubMed  Google Scholar 

  19. Bonnefont-Rousselot D, Collin F. Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology. 2010;278(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  20. Slominski AT, Kleszczyński K, Semak I, et al. Local melatoninergic system as the protector of skin integrity. Int J Mol Sci. 2014;15(10):17705–32.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Korkmaz A, Reiter RJ, Topal T, et al. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med. 2009;15(1–2):43–50.

    CAS  PubMed  Google Scholar 

  22. Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, et al. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: A possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol. 1997;159:574–81.

    CAS  PubMed  Google Scholar 

  23. Garcia-Maurino S, Pozo D, Carrillo-Vico A, et al. Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life Sci. 1999;65:2143–50.

    Article  CAS  PubMed  Google Scholar 

  24. Silvestri M, Rossi GA. Melatonin: its possible role in the management of viral infections—a brief review. Ital J Pediatr. 2013;39:61.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shaji AV, Kulkarni SK, Agrewala JN, et al. Regulation of secretion of IL-4 and IgG1 isotype by melatonin-stimulated ovalbumin-specific T cells. Clin Exp Imunol. 1998;111:181–5.

    Article  CAS  Google Scholar 

  26. Espino J, Pariente JA, Rodríguez AB. Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev. 2012;2012:670294.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carrillo-Vico A, Guerrero JM, Lardone PJ, et al. A review of the multiple actions of melatonin on the immune system. Endocrine. 2005;27:189–200.

    Article  CAS  PubMed  Google Scholar 

  28. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker ofoxidative stres. Nutr Metab Cardiovasc Dis. 2005;15(4):316–28.

    Article  PubMed  Google Scholar 

  29. Aydogan S, Yerer MB, Goktas A. Melatonin and nitric oxide. J Endocrinol Invest. 2006;29(3):281–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bakry OA, Elshazly RMA, Shoeib MAM, Gooda A. Oxidative stress in Alopecia Areata: a case-control study. Am J Clin Dermatol. 2014;15:57–64.

    Article  PubMed  Google Scholar 

  31. Bickers RD, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126:2565–75.

    Article  CAS  PubMed  Google Scholar 

  32. Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr Drug Targets Inflamm Allergy. 2005;4:517–9.

    Article  CAS  PubMed  Google Scholar 

  33. Pastore S, Korkina L. Redox imbalance in T cell-mediated skin diseases. Mediators Inflamm. 2010;2010:861949.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hanifin JM. Diagnostic features of atopic dermatitis. Acta Derm Venerol. 1980;94:44–7.

    Google Scholar 

  35. Kunz B, Oranje AP, Labrèze L, et al. Clinical validation and guidelines for the SCORAD index: consensus report of the European Task Force on Atopic Dermatitis. Dermatology. 1997;195:10–9.

    Article  CAS  PubMed  Google Scholar 

  36. Oranje AP. Practical issues on interpretation of scoring atopic dermatitis: SCORAD index, objective SCORAD, patient-oriented SCORAD and three-item severity score. Curr Prob Dermatol. 2011;41:149–55.

    Article  Google Scholar 

  37. Dreborg S. Skin test in diagnosis of food allergy. Allergy Proc. 1991;12(4):251–4.

    Article  CAS  PubMed  Google Scholar 

  38. Navarro-Gonzalves JA, Garcia-Benayas C, Arenas J. Semiautomated measurement of nitrate in biological fluids. Clin Chem. 1998;44:679–81.

    Google Scholar 

  39. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kim TH, Jung JA, Kim GD, et al. Melatonin inhibits the development of 2,4- dinitrofluorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice. J Pineal Res. 2009;47:324–9.

    Article  CAS  PubMed  Google Scholar 

  41. Schwarz W, Birau N, Hornstein OP, et al. Alterations of melatonin secretion in atopic eczema. Acta Derm Venereol. 1988;68:224–9.

    CAS  PubMed  Google Scholar 

  42. Marseglia L, Cuppari C, Manti S, et al. Atopic dermatitis: melatonin as potential treatment. J Biol Regul Homeost Agents. 2015;29:142–9.

    CAS  PubMed  Google Scholar 

  43. Chang YS, Chou YT, Lee JH, et al. Atopic dermatitis, melatonin, and sleep disturbance. Pediatrics. 2014;134:397–405.

    Article  Google Scholar 

  44. Kimata H. Elevation of salivary melatonin levels by viewing a humorous film in patients with atopic eczema. Horm Metab Res. 2007;39:310–1.

    Article  CAS  PubMed  Google Scholar 

  45. Perras B, Kurowski V, Dodt C. Nocturnal melatonin concentration is correlated with illness severity in patients with septic disease. Intensive Care Med. 2006;32:624–5.

    Article  PubMed  Google Scholar 

  46. Jin Y, Lin CJ, Dong LM, Chen MJ, Zhou Q, Wu JS. Clinical significance of melatonin concentrations in predicting the severity of acute pancreatitis. World J Gastroenterol. 2013;19(25):4066–71.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gallucci M, Flores-Obando R, Mazzuco S, Ongaro F, Di Giorgi E, Boldrini P, Durante E, Frigato A, Albani D, Forloni G, Zanardo A, Siculi M, Caberlotto L, Taioli E. Melatonin and the Charlson Comorbidity Index (CCI): the Treviso Longeva (Trelong) study. Int J Biol Markers. 2014;29(3):253–60.

    Article  Google Scholar 

  48. Pozo D, Reiter RJ, Calvo JR, et al. Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci. 1994;55:455–60.

    Article  Google Scholar 

  49. Omata N, Tsukahara H, Ito S, et al. Increased oxidative stress in childhood atopic dermatitis. Life Sci. 2001;69:223–8.

    Article  CAS  PubMed  Google Scholar 

  50. Tsukahara H, Shibata R, Ohshima Y. Oxidative stress and altered antioxidant defenses in children with acute exacerbation of atopic dermatitis. Life Sci. 2003;72:2509–16.

    Article  CAS  PubMed  Google Scholar 

  51. Sivaranjani N. Role of reactive oxygen species and antioxidants in atopic dermatitis. J Clin Diagn Res. 2013;12:2683–5.

    Google Scholar 

  52. Chung J, Oh SY, Shin YK. Association of glutathione-S-transferase polymorphisms with atopic dermatitis risk in preschool age children. Clin Chem Lab Med. 2009;12:1475–81.

    Google Scholar 

  53. Kaur S, Zilmer K, Leping V, et al. Allergic contact dermatitis is associated with significant oxidative stress. Dermatol Respir Pract. 2014;2014:415638.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Uysal.

Ethics declarations

All authors have read and approved this manuscript, the requirements for authorship have been met, and each author believes the manuscript represents honest work.

Funding

No sources of funding were used to conduct this study or to prepare this manuscript. Study expenses were financed by the authors.

Conflict of interest

Pınar Uysal, Sibelnur Avcil, Burçin İrem Abas, and Çiğdem Yenisey have no conflicts of interest.

All authors of this manuscript followed the protocols for publication of patient data. The study protocol was approved by our institution’s local ethics committee (protocol number 2015/715). The parents of each participant were informed in detail about the research and provided informed consent for the scientific reporting of the data based on the study protocol. All of the investigators conformed to the ethical standards as reported in the revised Declaration of Helsinki (2000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uysal, P., Avcil, S., Abas, B.İ. et al. Evaluation of Oxidant–Antioxidant Balance in Children with Atopic Dermatitis: A Case–Control Study. Am J Clin Dermatol 17, 527–537 (2016). https://doi.org/10.1007/s40257-016-0210-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-016-0210-8

Keywords

Navigation