Skip to main content

Recent Advances in Acne Pathogenesis: Implications for Therapy

Abstract

Acne pathogenesis is a multifactorial process that occurs at the level of the pilosebaceous unit. While acne was previously perceived as an infectious disease, recent data have clarified it as an inflammatory process in which Propionibacterium acnes and innate immunity play critical roles in propagating abnormal hyperkeratinization and inflammation. Alterations in sebum composition, and increased sensitivity to androgens, also play roles in the inflammatory process. A stepwise approach to acne management utilizes topical agents for mild to moderate acne (topical retinoid as mainstay ± topical antibiotics) and escalation to oral agents for more resistant cases (oral antibiotics or hormonal agents in conjunction with a topical retinoid or oral isotretinoin alone for severe acne). Concerns over antibiotic resistance and the safety issues associated with isotretinoin have prompted further research into alternative medications and devices for the treatment of acne. Radiofrequency, laser, and light treatments have demonstrated modest improvement for inflammatory acne (with blue-light photodynamic therapy being the only US FDA-approved treatment). However, limitations in study design and patient follow-up render these modalities as adjuncts rather than standalone options. This review will update readers on the latest advancements in our understanding of acne pathogenesis and treatment, with emphasis on emerging treatment options that can help improve patient outcomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Jeremy AHT, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol. 2003;121(1):20–7.

    CAS  PubMed  Article  Google Scholar 

  2. Guy R, Kealey T. Modelling the infundibulum in acne. Dermatol Basel Switz. 1998;196(1):32–7.

    CAS  Article  Google Scholar 

  3. Guy R, Kealey T. The effects of inflammatory cytokines on the isolated human sebaceous infundibulum. J Invest Dermatol. 1998;110(4):410–5.

    CAS  PubMed  Article  Google Scholar 

  4. Thiboutot D. Hormones and acne: pathophysiology, clinical evaluation, and therapies. Semin Cutan Med Surg. 2001;20(3):144–53.

    CAS  PubMed  Article  Google Scholar 

  5. Thiboutot D, Jabara S, McAllister JM, Sivarajah A, Gilliland K, Cong Z, et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120(6):905–14.

    CAS  PubMed  Article  Google Scholar 

  6. Thiboutot D. Acne: hormonal concepts and therapy. Clin Dermatol. 2004;22(5):419–28.

    PubMed  Article  Google Scholar 

  7. Thiboutot D. Regulation of human sebaceous glands. J Invest Dermatol. 2004;123(1):1–12.

    CAS  PubMed  Article  Google Scholar 

  8. Plewig G, Fulton JE, Kligman AM. Cellular dynamics of comedo formation in acne vulgaris. Arch Für Dermatol Forsch. 1971;242(1):12–29.

    CAS  Article  Google Scholar 

  9. Vowels BR, Yang S, Leyden JJ. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infect Immun. 1995;63(8):3158–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Beylot C, Auffret N, Poli F, Claudel J-P, Leccia M-T, Del Giudice P, et al. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol. 2014;28(3):271–8.

    CAS  PubMed  Article  Google Scholar 

  11. Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357(9270):1777–89.

    CAS  PubMed  Article  Google Scholar 

  12. Fluhr JW, Kao J, Jain M, Ahn SK, Feingold KR, Elias PM. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117(1):44–51.

    CAS  PubMed  Article  Google Scholar 

  13. Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol. 2005;125(2):183–200.

    CAS  PubMed  Google Scholar 

  14. Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29(1):3–14.

    PubMed  Article  Google Scholar 

  15. Braff MH, Bardan A, Nizet V, Gallo RL. Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol. 2005;125(1):9–13.

    CAS  PubMed  Article  Google Scholar 

  16. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008;122(2):261–6.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344(14):1058–66.

    CAS  PubMed  Article  Google Scholar 

  18. Jugeau S, Tenaud I, Knol AC, Jarrousse V, Quereux G, Khammari A, et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol. 2005;153(6):1105–13.

    CAS  PubMed  Article  Google Scholar 

  19. Kim J. Review of the innate immune response in acne vulgaris: activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatol Basel Switz. 2005;211(3):193–8.

    CAS  Article  Google Scholar 

  20. McInturff JE, Modlin RL, Kim J. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol. 2005;125(1):1–8.

    CAS  PubMed  Article  Google Scholar 

  21. McInturff JE, Kim J. The role of toll-like receptors in the pathophysiology of acne. Semin Cutan Med Surg. 2005;24(2):73–8.

    CAS  PubMed  Article  Google Scholar 

  22. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect Inst Pasteur. 2006;8(8):2195–205.

    CAS  Article  Google Scholar 

  23. Selway JL, Kurczab T, Kealey T, Langlands K. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne. BMC Dermatol. 2013;13:10.

    PubMed Central  PubMed  Article  Google Scholar 

  24. Perisho K, Wertz PW, Madison KC, Stewart ME, Downing DT. Fatty acids of acylceramides from comedones and from the skin surface of acne patients and control subjects. J Invest Dermatol. 1988;90(3):350–3.

    CAS  PubMed  Article  Google Scholar 

  25. Elias PM, Brown BE, Ziboh VA. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J Invest Dermatol. 1980;74(4):230–3.

    CAS  PubMed  Article  Google Scholar 

  26. Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M. Keratins and the keratinocyte activation cycle. J Invest Dermatol. 2001;116(5):633–40.

    CAS  PubMed  Article  Google Scholar 

  27. Kang S, Cho S, Chung JH, Hammerberg C, Fisher GJ, Voorhees JJ. Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-kappaB and activator protein-1 in inflammatory acne lesions in vivo. Am J Pathol. 2005;166(6):1691–9.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Guy R, Green MR, Kealey T. Modeling acne in vitro. J Invest Dermatol. 1996;106(1):176–82.

    CAS  PubMed  Article  Google Scholar 

  29. Burkhart CG, Burkhart CN. Expanding the microcomedone theory and acne therapeutics: Propionibacterium acnes biofilm produces biological glue that holds corneocytes together to form plug. J Am Acad Dermatol. 2007;57(4):722–4.

    PubMed  Article  Google Scholar 

  30. Kariya Y, Moriya T, Suzuki T, Chiba M, Ishida K, Takeyama J, et al. Sex steroid hormone receptors in human skin appendage and its neoplasms. Endocr J. 2005;52(3):317–25.

    CAS  PubMed  Article  Google Scholar 

  31. Zouboulis CC, Korge B, Akamatsu H, Xia LQ, Schiller S, Gollnick H, et al. Effects of 13-cis-retinoic acid, all-trans-retinoic acid, and acitretin on the proliferation, lipid synthesis and keratin expression of cultured human sebocytes in vitro. J Invest Dermatol. 1991;96(5):792–7.

    CAS  PubMed  Article  Google Scholar 

  32. Nelson AM, Gilliland KL, Cong Z, Thiboutot DM. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol. 2006;126(10):2178–89.

    CAS  PubMed  Article  Google Scholar 

  33. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta. 1996;1302(2):93–109.

    CAS  PubMed  Article  Google Scholar 

  34. Ottaviani M, Camera E, Picardo M. Lipid mediators in acne. Mediators Inflamm. 2010;2010:858176.

  35. Zhang L, Anthonavage M, Huang Q, Li W-H, Eisinger M. Proopiomelanocortin peptides and sebogenesis. Ann N Y Acad Sci. 2003;994:154–61.

    CAS  PubMed  Article  Google Scholar 

  36. Ganceviciene R, Graziene V, Böhm M, Zouboulis CC. Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris. Exp Dermatol. 2007;16(7):547–52.

    CAS  PubMed  Article  Google Scholar 

  37. Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol. 2009;160(2):345–52.

    CAS  PubMed  Article  Google Scholar 

  38. Thiboutot D, Sivarajah A, Gilliland K, Cong Z, Clawson G. The melanocortin 5 receptor is expressed in human sebaceous glands and rat preputial cells. J Invest Dermatol. 2000;115(4):614–9.

    CAS  PubMed  Article  Google Scholar 

  39. Zouboulis CC, Seltmann H, Hiroi N, Chen W, Young M, Oeff M, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci USA. 2002;99(10):7148–53.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Smith TM, Gilliland K, Clawson GA, Thiboutot D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol. 2008;128(5):1286–93.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Kligman AM, Katz AG. Pathogenesis of acne vulgaris. I. Comedogenic properties of human sebum in external ear canal of the rabbit. Arch Dermatol. 1968;98(1):53–7.

    CAS  PubMed  Article  Google Scholar 

  42. Mills OH, Kligman AM. A human model for assessing comedogenic substances. Arch Dermatol. 1982;118(11):903–5.

    CAS  PubMed  Article  Google Scholar 

  43. Motoyoshi K. Enhanced comedo formation in rabbit ear skin by squalene and oleic acid peroxides. Br J Dermatol. 1983;109(2):191–8.

    CAS  PubMed  Article  Google Scholar 

  44. Downing DT, Stewart ME, Wertz PW, Strauss JS. Essential fatty acids and acne. J Am Acad Dermatol. 1986;14(2 Pt 1):221–5.

    CAS  PubMed  Article  Google Scholar 

  45. Zouboulis CC. Acne and sebaceous gland function. Clin Dermatol. 2004;22(5):360–6.

    PubMed  Article  Google Scholar 

  46. Ottaviani M, Alestas T, Flori E, Mastrofrancesco A, Zouboulis CC, Picardo M. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. J Invest Dermatol. 2006;126(11):2430–7.

    CAS  PubMed  Article  Google Scholar 

  47. Alestas T, Ganceviciene R, Fimmel S, Müller-Decker K, Zouboulis CC. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med Berl Ger. 2006;84(1):75–87.

    CAS  Article  Google Scholar 

  48. Weindl G, Schäfer-Korting M, Schaller M, Korting HC. Peroxisome proliferator-activated receptors and their ligands: entry into the post-glucocorticoid era of skin treatment? Drugs. 2005;65(14):1919–34.

    CAS  PubMed  Article  Google Scholar 

  49. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169(3):1535–41.

    CAS  PubMed  Article  Google Scholar 

  50. Kuwahara K, Kitazawa T, Kitagaki H, Tsukamoto T, Kikuchi M. Nadifloxacin, an antiacne quinolone antimicrobial, inhibits the production of proinflammatory cytokines by human peripheral blood mononuclear cells and normal human keratinocytes. J Dermatol Sci. 2005;38(1):47–55.

    CAS  PubMed  Article  Google Scholar 

  51. Nagy I, Pivarcsi A, Koreck A, Széll M, Urbán E, Kemény L. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124(5):931–8.

    CAS  PubMed  Article  Google Scholar 

  52. Deplewski D, Rosenfield RL. Role of hormones in pilosebaceous unit development. Endocr Rev. 2000;21(4):363–92.

    CAS  PubMed  Article  Google Scholar 

  53. Gilliver SC, Ashworth JJ, Ashcroft GS. The hormonal regulation of cutaneous wound healing. Clin Dermatol. 2007;25(1):56–62.

    PubMed  Article  Google Scholar 

  54. Thiboutot D, Harris G, Iles V, Cimis G, Gilliland K, Hagari S. Activity of the type 1 5 alpha-reductase exhibits regional differences in isolated sebaceous glands and whole skin. J Invest Dermatol. 1995;105(2):209–14.

    CAS  PubMed  Article  Google Scholar 

  55. Merke DP, Bornstein SR. Congenital adrenal hyperplasia. Lancet. 2005;365(9477):2125–36.

    PubMed  Article  Google Scholar 

  56. Lolis MS, Bowe WP, Shalita AR. Acne and systemic disease. Med Clin North Am. 2009;93(6):1161–81.

    CAS  PubMed  Article  Google Scholar 

  57. Maluki AH. The frequency of polycystic ovary syndrome in females with resistant acne vulgaris. J Cosmet Dermatol. 2010;9(2):142–8.

    PubMed  Article  Google Scholar 

  58. Dessinioti C, Katsambas AD. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol. 2010;28(1):2–7.

    PubMed  Article  Google Scholar 

  59. Jalian HR, Liu PT, Kanchanapoomi M, Phan JN, Legaspi AJ, Kim J. All-trans retinoic acid shifts Propionibacterium acnes-induced matrix degradation expression profile toward matrix preservation in human monocytes. J Invest Dermatol. 2008;128(12):2777–82.

    CAS  PubMed  Article  Google Scholar 

  60. Choi J-Y, Piao MS, Lee J-B, Oh JS, Kim I-G, Lee S-C. Propionibacterium acnes stimulates pro-matrix metalloproteinase-2 expression through tumor necrosis factor-alpha in human dermal fibroblasts. J Invest Dermatol. 2008;128(4):846–54.

    CAS  PubMed  Article  Google Scholar 

  61. Chronnell CM, Ghali LR, Ali RS, Quinn AG, Holland DB, Bull JJ, et al. Human beta defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J Invest Dermatol. 2001;117(5):1120–5.

    CAS  PubMed  Article  Google Scholar 

  62. Jarrousse V, Castex-Rizzi N, Khammari A, Charveron M, Dréno B. Modulation of integrins and filaggrin expression by Propionibacterium acnes extracts on keratinocytes. Arch Dermatol Res. 2007;299(9):441–7.

    CAS  PubMed  Article  Google Scholar 

  63. Thielitz A, Abdel-Naser MB, Fluhr JW, Zouboulis CC, Gollnick H. Topical retinoids in acne–an evidence-based overview. J Dtsch Dermatol Ges. 2008;6(12):1023–31.

    PubMed  Article  Google Scholar 

  64. Kurlandsky SB, Xiao JH, Duell EA, Voorhees JJ, Fisher GJ. Biological activity of all-trans retinol requires metabolic conversion to all-trans retinoic acid and is mediated through activation of nuclear retinoid receptors in human keratinocytes. J Biol Chem. 1994;269(52):32821–7.

    CAS  PubMed  Google Scholar 

  65. Waugh J, Noble S, Scott LJ. Adapalene: a review of its use in the treatment of acne vulgaris. Drugs. 2004;64(13):1465–78.

    CAS  PubMed  Article  Google Scholar 

  66. Thielitz A, Krautheim A, Gollnick H. Update in retinoid therapy of acne. Dermatol Ther. 2006;19(5):272–9.

    PubMed  Article  Google Scholar 

  67. Bikowski JB. Mechanisms of the comedolytic and anti-inflammatory properties of topical retinoids. J Drugs Dermatol. 2005;4(1):41–7.

    PubMed  Google Scholar 

  68. Monk E, Shalita A, Siegel DM. Clinical applications of non-antimicrobial tetracyclines in dermatology. Pharmacol Res Off J Ital Pharmacol Soc. 2011;63(2):130–45.

    CAS  Google Scholar 

  69. Mays RM, Gordon RA, Wilson JM, Silapunt S. New antibiotic therapies for acne and rosacea. Dermatol Ther. 2012;25(1):23–37.

    PubMed  Article  Google Scholar 

  70. Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol. 2006;54(2):258–65.

    PubMed  Article  Google Scholar 

  71. Skidmore R, Kovach R, Walker C, Thomas J, Bradshaw M, Leyden J, et al. Effects of subantimicrobial-dose doxycycline in the treatment of moderate acne. Arch Dermatol. 2003;139(4):459–64.

    CAS  PubMed  Article  Google Scholar 

  72. Lam C, Zaenglein AL. Contraceptive use in acne. Clin Dermatol. 2014;32(4):502–15.

    PubMed  Article  Google Scholar 

  73. Goodfellow A, Alaghband-Zadeh J, Carter G, Cream JJ, Holland S, Scully J, et al. Oral spironolactone improves acne vulgaris and reduces sebum excretion. Br J Dermatol. 1984;111(2):209–14.

    CAS  PubMed  Article  Google Scholar 

  74. Shaw JC. Spironolactone in dermatologic therapy. J Am Acad Dermatol. 1991;24(2 Pt 1):236–43.

    CAS  PubMed  Article  Google Scholar 

  75. Adalatkhah H, Pourfarzi F, Sadeghi-Bazargani H. Flutamide versus a cyproterone acetate-ethinyl estradiol combination in moderate acne: a pilot randomized clinical trial. Clin Cosmet Investig Dermatol. 2011;4:117–21.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  76. Kang S, Li XY, Voorhees JJ. Pharmacology and molecular action of retinoids and vitamin D in skin. J Investig Dermatol Symp Proc. 1996;1(1):15–21.

    CAS  PubMed  Google Scholar 

  77. Strauss JS, Rapini RP, Shalita AR, Konecky E, Pochi PE, Comite H, et al. Isotretinoin therapy for acne: results of a multicenter dose-response study. J Am Acad Dermatol. 1984;10(3):490–6.

    CAS  PubMed  Article  Google Scholar 

  78. Layton AM, Knaggs H, Taylor J, Cunliffe WJ. Isotretinoin for acne vulgaris–10 years later: a safe and successful treatment. Br J Dermatol. 1993;129(3):292–6.

    CAS  PubMed  Article  Google Scholar 

  79. DiGiovanna JJ. Systemic retinoid therapy. Dermatol Clin. 2001;19(1):161–7.

    CAS  PubMed  Article  Google Scholar 

  80. Lumsden KR, Nelson AM, Dispenza MC, Gilliland KL, Cong Z, Zaenglein AL, et al. Isotretinoin increases skin-surface levels of neutrophil gelatinase-associated lipocalin in patients treated for severe acne. Br J Dermatol. 2011;165(2):302–10.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  81. Borovaya A, Dombrowski Y, Zwicker S, Olisova O, Ruzicka T, Wolf R, et al. Isotretinoin therapy changes the expression of antimicrobial peptides in acne vulgaris. Arch Dermatol Res. 2014;306(8):689–700.

    CAS  PubMed  Article  Google Scholar 

  82. Patel M, Bowe WP, Heughebaert C, Shalita AR. The development of antimicrobial resistance due to the antibiotic treatment of acne vulgaris: a review. J Drugs Dermatol. 2010;9(6):655–64.

    PubMed  Google Scholar 

  83. Hoover WD, Davis SA, Fleischer AB, Feldman SR. Topical antibiotic monotherapy prescribing practices in acne vulgaris. J Dermatol Treat. 2014;25(2):97–9.

    CAS  Article  Google Scholar 

  84. Ruiz-Esparza J, Gomez JB. Nonablative radiofrequency for active acne vulgaris: the use of deep dermal heat in the treatment of moderate to severe active acne vulgaris (thermotherapy): a report of 22 patients. Dermatol Surg. 2003;29(4):333–9 (discussion 339).

    PubMed  Google Scholar 

  85. Taub AF. Procedural treatments for acne vulgaris. Dermatol Surg. 2007;33(9):1005–26.

    CAS  PubMed  Google Scholar 

  86. Lee SJ, Goo JW, Shin J, Chung WS, Kang JM, Kim YK, et al. Use of fractionated microneedle radiofrequency for the treatment of inflammatory acne vulgaris in 18 Korean patients. Dermatol Surg. 2012;38(3):400–5.

    CAS  PubMed  Article  Google Scholar 

  87. Munavalli GS, Weiss RA. Evidence for laser- and light-based treatment of acne vulgaris. Semin Cutan Med Surg. 2008;27(3):207–11.

    CAS  PubMed  Article  Google Scholar 

  88. Wat H, Wu DC, Rao J, Goldman MP. Application of intense pulsed light in the treatment of dermatologic disease: a systematic review. Dermatol Surg. 2014;40(4):359–77.

    CAS  PubMed  Article  Google Scholar 

  89. Lee EJ, Lim HK, Shin MK, Suh D-H, Lee S-J, Kim NI. An open-label, split-face trial evaluating efficacy and safty of photopneumatic therapy for the treatment of acne. Ann Dermatol. 2012;24(3):280–6.

    PubMed Central  PubMed  Article  Google Scholar 

  90. Elman M, Slatkine M, Harth Y. The effective treatment of acne vulgaris by a high-intensity, narrow band 405–420 nm light source. J Cosmet Laser Ther. 2003;5(2):111–7.

    PubMed  Article  Google Scholar 

  91. Huh SY, Na J-I, Huh C-H, Park K-C. The effect of photodynamic therapy using indole-3-acetic acid and green light on acne vulgaris. Ann Dermatol. 2012;24(1):56–60.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  92. Wan MT, Lin JY. Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol. 2014;7:145–63.

    PubMed Central  PubMed  Google Scholar 

  93. Ma L, Xiang L-H, Yu B, Yin R, Chen L, Wu Y, et al. Low-dose topical 5-aminolevulinic acid photodynamic therapy in the treatment of different severity of acne vulgaris. Photodiagnosis Photodyn Ther. 2013;10(4):583–90.

    CAS  PubMed  Article  Google Scholar 

  94. Sakamoto FH, Torezan L, Anderson RR. Photodynamic therapy for acne vulgaris: a critical review from basics to clinical practice: part II. Understanding parameters for acne treatment with photodynamic therapy. J Am Acad Dermatol. 2010;63(2):195–211 (quiz 211–2).

    PubMed  Article  Google Scholar 

  95. Seaton ED, Charakida A, Mouser PE, Grace I, Clement RM, Chu AC. Pulsed-dye laser treatment for inflammatory acne vulgaris: randomised controlled trial. Lancet. 2003;362(9393):1347–52.

    CAS  PubMed  Article  Google Scholar 

  96. Orringer JS, Kang S, Hamilton T, Schumacher W, Cho S, Hammerberg C, et al. Treatment of acne vulgaris with a pulsed dye laser: a randomized controlled trial. JAMA. 2004;291(23):2834–9.

    CAS  PubMed  Article  Google Scholar 

  97. Paithankar DY, Ross EV, Saleh BA, Blair MA, Graham BS. Acne treatment with a 1,450 nm wavelength laser and cryogen spray cooling. Lasers Surg Med. 2002;31(2):106–14.

    PubMed  Article  Google Scholar 

  98. Friedman PM, Jih MH, Kimyai-Asadi A, Goldberg LH. Treatment of inflammatory facial acne vulgaris with the 1450-nm diode laser: a pilot study. Dermatol Surg. 2004;30(2 Pt 1):147–51.

    PubMed  Google Scholar 

  99. Darné S, Hiscutt EL, Seukeran DC. Evaluation of the clinical efficacy of the 1,450 nm laser in acne vulgaris: a randomized split-face, investigator-blinded clinical trial. Br J Dermatol. 2011;165(6):1256–62.

    PubMed  Article  Google Scholar 

  100. Anderson RR, Farinelli W, Laubach H, Manstein D, Yaroslavsky AN, Gubeli J, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med. 2006;38(10):913–9.

    PubMed  Article  Google Scholar 

  101. Sakamoto FH, Doukas AG, Farinelli WA, Tannous Z, Shinn M, Benson S, et al. Selective photothermolysis to target sebaceous glands: theoretical estimation of parameters and preliminary results using a free electron laser. Lasers Surg Med. 2012;44(2):175–83.

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

Neither Dr Reynolds nor Dr Das has any conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel V. Reynolds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, S., Reynolds, R.V. Recent Advances in Acne Pathogenesis: Implications for Therapy. Am J Clin Dermatol 15, 479–488 (2014). https://doi.org/10.1007/s40257-014-0099-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-014-0099-z

Keywords

  • Acne
  • Isotretinoin
  • Tretinoin
  • Sebaceous Gland
  • Tazarotene