Skip to main content
Log in

Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus and Cardiovascular Disease: The Past, Present, and Future

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is associated with high cardiovascular morbidity and mortality, and cardiovascular diseases are the leading causes of death and disability in people with T2DM. Unfortunately, therapies strictly aimed at glycemic control have poorly contributed to a significant reduction in the risk of cardiovascular events. On the other hand, randomized controlled trials have shown that five glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and one exendin-based GLP-1 RA reduced atherosclerotic cardiovascular events in patients with diabetes at high cardiovascular risk. Furthermore, a meta-analysis including these six agents showed a reduction in major adverse cardiovascular events as well as all-cause mortality compared with placebo, regardless of structural homology. Evidence has also shown that some drugs in this class have beneficial effects on renal outcomes, such as preventing the onset of macroalbuminuria. In addition to lowering blood pressure, these drugs also favorably impacted on body weight in large randomized controlled trials as in real-world studies, a result considered a priority in T2DM management; these and other factors may justify the benefits of GLP-1 RAs upon the cardiovascular system, regardless of glycemic control. Finally, studies showed safety with a low risk of hypoglycemia and no increase in pancreatitis events. Given these benefits, GLP-1 RAs were preferentially endorsed in the guidelines of the European and American societies for patients with these conditions. This narrative review provides a current and comprehensive overview of GLP-1 RAs as cardiovascular and renal protective agents, far beyond their use as glucose-lowering drugs, supporting their effectiveness in treating patients with T2DM at high cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019;74(20):2529–32. https://doi.org/10.1016/j.jacc.2019.10.009.

    Article  PubMed  Google Scholar 

  2. Dunbar SB, et al. Projected costs of informal caregiving for cardiovascular disease: 2015 to 2035: a policy statement from the American Heart Association. Circulation. 2018;137(19):e558–77. https://doi.org/10.1161/CIR.0000000000000570.

    Article  PubMed  Google Scholar 

  3. Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr Cardiol Rep. 2019;21(4):21. https://doi.org/10.1007/s11886-019-1107-y.

    Article  PubMed  Google Scholar 

  4. Raghavan S, et al. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8(4): e011295. https://doi.org/10.1161/JAHA.118.011295.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Penna C, et al. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol. 2020;177(23):5312–35. https://doi.org/10.1111/bph.14993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fox CS, et al. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2015;38(9):1777–803. https://doi.org/10.2337/dci15-0012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ray KK, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72. https://doi.org/10.1016/S0140-6736(09)60697-8.

    Article  CAS  PubMed  Google Scholar 

  8. Ferrari F, et al. The role of sodium-glucose cotransporter-2 inhibitors in patients with heart failure, regardless of diabetes status: focus on cardiovascular disease. Ann Pharmacother. 2021;55(10):1267–75. https://doi.org/10.1177/1060028020985111.

    Article  CAS  PubMed  Google Scholar 

  9. [No authors listed]. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–65. https://doi.org/10.1016/S0140-6736(98)07037-8.

  10. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71. https://doi.org/10.1056/NEJMoa072761.

    Article  CAS  PubMed  Google Scholar 

  11. Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med. 2013;369:1285–7. https://doi.org/10.1056/NEJMp1309610.

    Article  CAS  PubMed  Google Scholar 

  12. Gourgari E, Wilhelm EE, Hassanzadeh H, Aroda VR, Shoulson I. A comprehensive review of the FDA-approved labels of diabetes drugs: indications, safety, and emerging cardiovascular safety data. J Diabetes Complications. 2017;31(12):1719–27. https://doi.org/10.1016/j.jdiacomp.2017.08.005.

    Article  PubMed  Google Scholar 

  13. Marso SP, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  14. Husain M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381(9):841–51. https://doi.org/10.1056/NEJMoa1901118.

    Article  CAS  PubMed  Google Scholar 

  15. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. https://doi.org/10.1161/CIRCRESAHA.110.223545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tessari P, et al. Nitric oxide synthesis is reduced in subjects with type 2 diabetes and nephropathy. Diabetes. 2010;59(9):2152–9. https://doi.org/10.2337/db09-1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deacon CF. Physiology and pharmacology of dpp-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol (Lausanne). 2019;10:80. https://doi.org/10.3389/fendo.2019.00080.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pomero F, Di Minno MN, Fenoglio L, Gianni M, Ageno W, Dentali F. Is diabetes a hypercoagulable state? A critical appraisal. Acta Diabetol. 2015;52(6):1007–16. https://doi.org/10.1007/s00592-015-0746-8.

    Article  CAS  PubMed  Google Scholar 

  19. Schaan BD, et al. Diabetes and cardiovascular events in high-risk patients: Insights from a multicenter registry in a middle-income country. Diabetes Res Clin Pract. 2017;127:275–84. https://doi.org/10.1016/j.diabres.2017.03.021.

    Article  PubMed  Google Scholar 

  20. Gregg EW, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514–23. https://doi.org/10.1056/NEJMoa1310799.

    Article  CAS  PubMed  Google Scholar 

  21. Rawshani A, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–44. https://doi.org/10.1056/NEJMoa1800256.

    Article  PubMed  Google Scholar 

  22. Ramracheya R, et al. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol Rep. 2018;6(17): e13852. https://doi.org/10.14814/phy2.13852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lastya A, Saraswati MR, Suastika K. The low level of glucagon-like peptide-1 (glp-1) is a risk factor of type 2 diabetes mellitus. BMC Res Notes. 2014;7:849. https://doi.org/10.1186/1756-0500-7-849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anderson JW, Kendall CW, Jenkins DJ. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr. 2003;22(5):331–9. https://doi.org/10.1080/07315724.2003.10719316.

    Article  PubMed  Google Scholar 

  25. Crane J, McGowan B. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity. Ther Adv Chronic Dis. 2016;7(2):92–107. https://doi.org/10.1177/2040622315620180.

    Article  CAS  PubMed  Google Scholar 

  26. Skibicka KP. The central GLP-1: implications for food and drug reward. Front Neurosci. 2013;7:181. https://doi.org/10.3389/fnins.2013.00181.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS ONE. 2015;10(3): e0119034. https://doi.org/10.1371/journal.pone.0119034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: current advancements and challenges. Biomed Pharmacother. 2018;108:952–62. https://doi.org/10.1016/j.biopha.2018.08.088.

    Article  CAS  PubMed  Google Scholar 

  29. Kalra S, Sahay R. A review on semaglutide: an oral glucagon-like peptide 1 receptor agonist in management of type 2 diabetes mellitus. Diabetes Ther. 2020;11:1965–82. https://doi.org/10.1007/s13300-020-00894-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prasad-Reddy L, Isaacs D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context. 2015;4: 212283. https://doi.org/10.7573/dic.212283.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pfeffer MA, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  PubMed  Google Scholar 

  32. Marso SP, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mann JFE, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377(9):839–48. https://doi.org/10.1056/NEJMoa1616011.

    Article  CAS  PubMed  Google Scholar 

  34. Marson SP, et al. Effects of liraglutide on cardiovascular outcomes in patients with diabetes with or without heart failure. J Am Coll Cardiol. 2020;75(10):1128–41. https://doi.org/10.1016/j.jacc.2019.12.063.

    Article  CAS  Google Scholar 

  35. Cosentino F, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  PubMed  Google Scholar 

  36. Leiter LA, et al. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: a post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc Diabetol. 2019;18(1):73. https://doi.org/10.1186/s12933-019-0871-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holman RR, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  38. Gerstein HC, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–30. https://doi.org/10.1016/S0140-6736(19)31149-3.

    Article  CAS  PubMed  Google Scholar 

  39. Gerstein HC, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394(10193):131–8. https://doi.org/10.1016/S0140-6736(19)31150-X.

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez AF, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X.

    Article  CAS  PubMed  Google Scholar 

  41. Nuhoho S, Gupta J, Hansen BB, Fletcher-Louis M, Dang-Tan T, Paine A. Orally administered semaglutide versus glp-1 ras in patients with type 2 diabetes previously receiving 1–2 oral antidiabetics: systematic review and network meta-analysis. Diabetes Ther. 2019;10(6):2183–99. https://doi.org/10.1007/s13300-019-00706-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerstein HC, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021;385:896–907. https://doi.org/10.1056/NEJMoa2108269.

    Article  CAS  PubMed  Google Scholar 

  43. Pratley RE, et al. Body weight management and safety with efpeglenatide in adults without diabetes: a phase II randomized study. Diabetes Obes Metab. 2019;21(11):2429–39. https://doi.org/10.1111/dom.13824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosenstock J, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398(10295):143–55. https://doi.org/10.1016/S0140-6736(21)01324-6 (Epub 2021 June 27; Erratum in: Lancet. 2021;398(10296):212).

    Article  CAS  PubMed  Google Scholar 

  45. Frías JP, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385(6):503–15. https://doi.org/10.1056/NEJMoa2107519.

    Article  PubMed  Google Scholar 

  46. Wilson JM, et al. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab. 2020;22(12):2451–9. https://doi.org/10.1111/dom.14174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776–85. https://doi.org/10.1016/S2213-8587(19)30249-9.

    Article  CAS  PubMed  Google Scholar 

  48. Giugliano D, Maiorino MI, Bellastella G, Longo M, Chiodini P, Esposito K. GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials. Diabetes Obes Metab. 2019;21(11):2576–80.

    Article  CAS  Google Scholar 

  49. Sattar N, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet. 2021;9(10):653–62. https://doi.org/10.1016/S2213-8587(21)00203-5.

    Article  CAS  Google Scholar 

  50. Giugliano D, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 2021;20(1):189. https://doi.org/10.1186/s12933-021-01366-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qian W, Liu F, Yang Q. Effect of glucagon-like peptide-1 receptor agonists in subjects with type 2 diabetes mellitus: a meta-analysis. J Clin Pharm Ther. 2021. https://doi.org/10.1111/jcpt.13502 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  52. Palmer SC, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;13(372): m4573. https://doi.org/10.1136/bmj.m4573.

    Article  Google Scholar 

  53. Uneda K, et al. Systematic review and meta-analysis for prevention of cardiovascular complications using GLP-1 receptor agonists and SGLT-2 inhibitors in obese diabetic patients. Sci Rep. 2021;11(1):10166. https://doi.org/10.1038/s41598-021-89620-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ida S, et al. Effects of oral antidiabetic drugs and glucagon-like peptide-1 receptor agonists on left ventricular diastolic function in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Heart Fail Rev. 2021;26(5):1151–8. https://doi.org/10.1007/s10741-020-09936-w.

    Article  CAS  PubMed  Google Scholar 

  55. Marsico F, et al. Effects of glucagon-like peptide-1 receptor agonists on major cardiovascular events in patients with Type 2 diabetes mellitus with or without established cardiovascular disease: a meta-analysis of randomized controlled trials. Eur Heart J. 2020;41(35):3346–58. https://doi.org/10.1093/eurheartj/ehaa082.

    Article  CAS  PubMed  Google Scholar 

  56. Patoulias D, Papadopoulos C, Stavropoulos K, Imprialos K, Doumas M. Updated meta-analysis of trials assessing the cardiovascular efficacy of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists in black patients. Am J Cardiol. 2020;15(137):133–5. https://doi.org/10.1016/j.amjcard.2020.10.004.

    Article  CAS  Google Scholar 

  57. Mata-Cases M, Franch-Nadal J, Ortega E, Real J, Gratacòs M, Vlacho B, Mauricio D. Glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: real-world evidence from a Mediterranean area. Curr Med Res Opin. 2019;35(10):1735–44.

    Article  CAS  Google Scholar 

  58. Feher M, et al. Effectiveness of liraglutide and lixisenatide in the treatment of type 2 diabetes: real-world evidence from The Health Improvement Network (THIN) Database in the United Kingdom. Diabetes Ther. 2017;8(2):417–31.

    Article  CAS  Google Scholar 

  59. Ishigaki Y, et al. Glucagon-like peptide-1 receptor agonist utilization in type 2 diabetes in Japan: a retrospective database analysis (JDDM 57). Diabetes Ther. 2021;12(1):345–61. https://doi.org/10.1007/s13300-020-00977-w.

    Article  CAS  PubMed  Google Scholar 

  60. Ostawal A, Mocevic E, Kragh N, Xu W. Clinical effectiveness of liraglutide in type 2 diabetes treatment in the real-world setting: a systematic literature review. Diabetes Ther. 2016;7(3):411–38. https://doi.org/10.1007/s13300-016-0180-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moreno Obregón F, et al. Real-life experience with dulaglutide: analysis of clinical effectiveness to 24 months. Diabetes Res Clin Pract. 2019;158: 107916. https://doi.org/10.1016/j.diabres.2019.107916.

    Article  CAS  PubMed  Google Scholar 

  62. Baviera M, et al. Lower risk of death and cardiovascular events in patients with diabetes initiating glucagon-like peptide-1 receptor agonists or sodium-glucose cotransporter-2 inhibitors: a real-world study in two Italian cohorts. Diabetes Obes Metab. 2021;23(7):1484–95. https://doi.org/10.1111/dom.14361.

    Article  CAS  PubMed  Google Scholar 

  63. Longato E, Di Camillo B, Sparacino G, Gubian L, Avogaro A, Fadini GP. Cardiovascular outcomes of type 2 diabetic patients treated with SGLT-2 inhibitors versus GLP-1 receptor agonists in real-life. BMJ Open Diabetes Res Care. 2020;8:e001451.

    Article  Google Scholar 

  64. Pasternak B, et al. Use of glucagon-like peptide 1 receptor agonists and risk of serious renal events: scandinavian cohort study. Diabetes Care. 2020;43:1326–35.

    Article  Google Scholar 

  65. Zerovnik S, Kos M, Locatelli I. Cardiovascular morbidity and mortality in patients with type 2 diabetes using novel antidiabetic medicines as add-on therapy: an observational real-world study. BMJ Open. 2021;11(9): e051549. https://doi.org/10.1136/bmjopen-2021-051549.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rea F, Ciardullo S, Savaré L, Perseghin G, Corrao G. Comparing medication persistence among patients with type 2 diabetes using sodium-glucose cotransporter 2 inhibitors or glucagon-like peptide-1 receptor agonists in real-world setting. Diabetes Res Clin Pract. 2021;3: 109035. https://doi.org/10.1016/j.diabres.2021.109035.

    Article  CAS  Google Scholar 

  67. Trevisan M, et al. Glucagon-like peptide-1 receptor agonists and the risk of cardiovascular events in diabetes patients surviving an acute myocardial infarction. Eur Heart J Cardiovasc Pharmacother. 2021;7(2):104–11. https://doi.org/10.1093/ehjcvp/pvaa004.

    Article  PubMed  Google Scholar 

  68. Dong Z, et al. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment. Am J Physiol Endocrinol Metab. 2013;304(2):E222–8. https://doi.org/10.1152/ajpendo.00473.2012.

    Article  CAS  PubMed  Google Scholar 

  69. Almutairi M, Al Batran R, Ussher JR. Glucagon-like peptide-1 receptor action in the vasculature. Peptides. 2019;111:26–32. https://doi.org/10.1016/j.peptides.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  70. Li Y, et al. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol Res. 2021;1: 105867. https://doi.org/10.1016/j.phrs.2021.105867.

    Article  CAS  Google Scholar 

  71. Shi L, et al. Liraglutide attenuates high glucose-induced abnormal cell migration, proliferation, and apoptosis of vascular smooth muscle cells by activating the GLP-1 receptor, and inhibiting ERK1/2 and PI3K/Akt signaling pathways. Cardiovasc Diabetol. 2015;7(14):18. https://doi.org/10.1186/s12933-015-0177-4.

    Article  CAS  Google Scholar 

  72. Bruen R, et al. Liraglutide dictates macrophage phenotype in apolipoprotein E null mice during early atherosclerosis. Cardiovasc Diabetol. 2017;16(1):143.

    Article  Google Scholar 

  73. Dieter BP, Alicic RZ, Tuttle KR. GLP-1 receptor agonists in diabetic kidney disease: from the patient-side to the bench-side. Am J Physiol Ren Physiol. 2018;315(6):F1519–25. https://doi.org/10.1152/ajprenal.00211.2018.

    Article  CAS  Google Scholar 

  74. Ding L, Zhang J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin. 2012;33(1):75–81. https://doi.org/10.1038/aps.2011.149.

    Article  CAS  PubMed  Google Scholar 

  75. Katsurada K, Nandi SS, Sharma NM, Zheng H, Liu X, Patel KP. Does glucagon-like peptide-1 induce diuresis and natriuresis by modulating afferent renal nerve activity? Am J Physiol Ren Physiol. 2019;317(4):F1010–21. https://doi.org/10.1152/ajprenal.00028.2019.

    Article  Google Scholar 

  76. Rakipovski G, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE−/− and LDLr−/− mice by a mechanism that includes inflammatory pathways. JACC Basic Transl Sci. 2018;3(6):844–57. https://doi.org/10.1016/j.jacbts.2018.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hogan AE, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57(4):781–4. https://doi.org/10.1007/s00125-013-3145-0.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Chen R, Jia Y, Chen M, Shuai Z. Effects of exenatide on coagulation and platelet aggregation in patients with type 2 diabetes. Drug Des Devel Ther. 2021;15:3027–40. https://doi.org/10.2147/DDDT.S312347.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ninčević V, Omanović Kolarić T, Roguljić H, Kizivat T, Smolić M, Bilić ĆI. Renal benefits of SGLT 2 inhibitors and GLP-1 receptor agonists: evidence supporting a paradigm shift in the medical management of type 2 diabetes. Int J Mol Sci. 2019;20(23):5831. https://doi.org/10.3390/ijms20235831.

    Article  CAS  PubMed Central  Google Scholar 

  80. Neeland IJ, et al. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: a randomised, double-blind, placebo-controlled, clinical trial. Lancet Diabetes Endocrinol. 2021;9(9):595–605. https://doi.org/10.1016/S2213-8587(21)00179-0.

    Article  CAS  PubMed  Google Scholar 

  81. Drab SR. Glucagon-like peptide-1 receptor agonists for type 2 diabetes: a clinical update of safety and efficacy. Curr Diabetes Rev. 2016;12(4):403–13. https://doi.org/10.2174/1573399812666151223093841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sterling J, Hua P, Dunaief JL, Cui QN, VanderBeek BL. Glucagon-like peptide 1 receptor agonist use is associated with reduced risk for glaucoma. Br J Ophthalmol. 2021. https://doi.org/10.1136/bjophthalmol-2021-319232 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  83. Sun F, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pract. 2015;110(1):26–37. https://doi.org/10.1016/j.diabres.2015.07.015.

    Article  CAS  PubMed  Google Scholar 

  84. Heuvelman VD, Van Raalte DH, Smits MM. Cardiovascular effects of glucagon-like peptide 1 receptor agonists: from mechanistic studies in humans to clinical outcomes. Cardiovasc Res. 2020;116(5):916–30. https://doi.org/10.1093/cvr/cvz323.

    Article  CAS  PubMed  Google Scholar 

  85. Smits MM, et al. Heart rate acceleration with GLP-1 receptor agonists in type 2 diabetes patients: an acute and 12-week randomised, double-blind, placebo-controlled trial. Eur J Endocrinol. 2017;176(1):77–86. https://doi.org/10.1530/EJE-16-0507.

    Article  CAS  PubMed  Google Scholar 

  86. Baker C, Retzik-Stahr C, Singh V, Plomondon R, Anderson V, Rasouli N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Ther Adv Endocrinol Metab. 2021;13(12):2042018820980225. https://doi.org/10.1177/2042018820980225.

    Article  CAS  Google Scholar 

  87. An H, He L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol. 2016;228(3):R97-106. https://doi.org/10.1530/JOE-15-0447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Song Y, Ma P, Gao Y, Xiao P, Xu L, Liu H. A bibliometrics analysis of metformin development from 1980 to 2019. Front Pharmacol. 2021;28(12): 645810. https://doi.org/10.3389/fphar.2021.645810.

    Article  CAS  Google Scholar 

  89. Good CB, Pogach LM. Should metformin be first-line therapy for patients with type 2 diabetes and chronic kidney disease? Informed patients should decide. JAMA Intern Med. 2018;178(7):911–2.

    Article  Google Scholar 

  90. Hur KY, et al. Metformin treatment for patients with diabetes and chronic kidney disease: a Korean Diabetes Association and Korean Society of Nephrology Consensus Statement. Diabetes Metab J. 2020;44(1):3–10. https://doi.org/10.4093/dmj.2020.0004.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang W, et al. Efficacy and safety of once-weekly dulaglutide versus insulin glargine in mainly Asian patients with type 2 diabetes mellitus on metformin and/or a sulphonylurea: a 52-week open-label, randomized phase III trial. Diabetes Obes Metab. 2019;21(2):234–43. https://doi.org/10.1111/dom.13506.

    Article  CAS  PubMed  Google Scholar 

  92. Virani SS, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950.

    Article  PubMed  Google Scholar 

  93. Shin H, Schneeweiss S, Glynn RJ, Patorno E. Trends in first-line glucose-lowering drug use in adults with type 2 diabetes in light of emerging evidence for SGLT-2i and GLP-1 RA. Diabetes Care. 2021;44(8):1774–82. https://doi.org/10.2337/dc20-2926.

    Article  CAS  PubMed  Google Scholar 

  94. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S98–110. https://doi.org/10.2337/dc20-S009.

    Article  Google Scholar 

  95. Davies MJ, et al. Management of hyperglycemia in type 2 diabetes, 2018: a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–701. https://doi.org/10.2337/dci18-0033.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Visseren FLJ, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227–337.

    Article  Google Scholar 

  97. Das SR, et al. 2020 expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2020;76(9):1117–45. https://doi.org/10.1016/j.jacc.2020.05.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Stein.

Ethics declarations

Funding

This study was partially supported by the Hospital de Clínicas de Porto Alegre Research Incentive Fund (FIPE-HCPA), Porto Alegre, Brazil, and by the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—funding code 001. FF receives financial support from CAPES. RDS  is recipient of a Brazilian National Council for Scientific and Technological Development (CNPq) research scholarship (filing #303734/2018-3). RS receives research productivity funding from CNPq.  

Conflicts of interest

RDS has received honoraria related to consulting, research, and/or speaker activities from Abbott, Amgen, Aché, Amryt, AstraZeneca, Esperion, EMS, Kowa, Hypera, Merck, MSD, Novo Nordisk, Novartis, PTC, Pfizer, Roche, and Sanofi. Filipe Ferrari, Rafael S. Scheffel, Vítor M. Martins, and Ricardo Stein have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved the submission.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

Conception and design of the research; acquisition, analysis, and interpretation of the data; and writing of the manuscript: FF, RSS, VMM, RDS, RS. Critical revision of the manuscript for intellectual content: FF, RSS, RDS, RS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, F., Scheffel, R.S., Martins, V.M. et al. Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus and Cardiovascular Disease: The Past, Present, and Future. Am J Cardiovasc Drugs 22, 363–383 (2022). https://doi.org/10.1007/s40256-021-00515-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-021-00515-4

Navigation