Skip to main content
Log in

Effects of Blood Pressure Lowering Agents on Cardiovascular Outcomes in Weight Excess Patients: A Systematic Review and Meta-analysis

  • Systematic Review
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Background

Obesity hypertension is an ongoing pandemic. The first-line medications to treat this condition are still subject to debate. We compared diuretics, calcium-channel blockers (CCB), beta-blockers (BB), angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) as an initial antihypertensive therapy for prevention of cardiovascular morbimortality of hypertensive individuals who are overweight or obese.

Methods

We conducted a search of the literature for randomized clinical trials in which at least 50% of the participants were overweight or obese. The primary outcomes were all-cause mortality, cardiovascular mortality, acute myocardial infarction (MI), heart failure (HF), stroke, or end-stage renal disease.

Results

Our search yielded 16 randomized studies. Comparisons of two classes of drugs with at least two studies indicated that (1) CCB and ACEI increased the risk of HF [relative risk (RR) = 2.26; 95% confidence interval (CI) 1.16–4.40] and stroke [hazard ratio (HR) = 1.13; 1.00–1.26]), respectively, compared to diuretics; and (2) CCB showed a reduction in stroke (HR = 0.77; 0.66–0.89) and total mortality (HR = 0.94; 0.87–1.01) compared to the BB atenolol. Comparisons of two classes of antihypertensive medications with only one study showed that the risk of MI was higher with ARB valsartan versus CCB (HR = 1.19; 95% CI 1.02–1.38, p = 0.02). In contrast, losartan lowered the risk of a composite cardiovascular outcome compared to atenolol (HR = 0.87; 95% CI 0.77–0.98, p = 0.02).

Conclusions

In hypertensive subjects with excess weight, diuretics are more effective for preventing HF and stroke than CCB and ACEI, respectively. CCB are a good first-line choice for prevention of cardiovascular disease, except HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Obesity and Overweight. World Health Organization. 2018, https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 24 July 2019.

  2. Sturm R. Increases in morbid obesity in the USA: 2000–2005. Public Health. 2007;121(7):492–6. https://doi.org/10.1016/j.puhe.2007.01.006.

    Article  PubMed  CAS  Google Scholar 

  3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23. https://doi.org/10.1016/S0140-6736(05)17741-1.

    Article  PubMed  Google Scholar 

  4. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50. https://doi.org/10.1161/CIRCULATIONAHA.115.018912.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garrison RJ, Kannel WB, Stokes J 3rd, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med. 1987;16(2):235–51.

    Article  CAS  PubMed  Google Scholar 

  6. Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25(4 Pt 2):893–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006. https://doi.org/10.1161/circresaha.116.305697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Grassi G, Seravalle G, Dell’Oro R, Turri C, Bolla GB, Mancia G. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension. 2000;36(4):538–42.

    Article  CAS  PubMed  Google Scholar 

  9. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43(1):41–7. https://doi.org/10.1161/01.HYP.0000105624.68174.00.

    Article  PubMed  CAS  Google Scholar 

  10. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59(5):1069–78. https://doi.org/10.1161/hypertensionaha.111.190223.

    Article  PubMed  CAS  Google Scholar 

  11. Cassano PA, Segal MR, Vokonas PS, Weiss ST. Body fat distribution, blood pressure, and hypertension. A prospective cohort study of men in the normative aging study. Ann Epidemiol. 1990;1(1):33–48.

    Article  CAS  PubMed  Google Scholar 

  12. Huang Z, Willett WC, Manson JE, Rosner B, Stampfer MJ, Speizer FE, et al. Body weight, weight change, and risk for hypertension in women. Ann Intern Med. 1998;128(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  13. Stevens VJ, Obarzanek E, Cook NR, Lee IM, Appel LJ, Smith West D, et al. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Ann Intern Med. 2001;134(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang T, Zhang H, Li S, Li Y, Liu Y, Fernandez C, et al. Impact of adiposity on incident hypertension is modified by insulin resistance in adults: longitudinal observation from the Bogalusa Heart Study. Hypertension. 2016;67(1):56–62. https://doi.org/10.1161/HYPERTENSIONAHA.115.06509.

    Article  PubMed  CAS  Google Scholar 

  15. Francischetti EA, Genelhu VA. Obesity-hypertension: an ongoing pandemic. Int J Clin Pract. 2007;61(2):269–80. https://doi.org/10.1111/j.1742-1241.2006.01262.x.

    Article  PubMed  CAS  Google Scholar 

  16. do Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, de Lara Rodriguez CE, et al. Obesity-induced hypertension: brain signaling pathways. Curr Hypertens Rep. 2016;18(7):58. https://doi.org/10.1007/s11906-016-0658-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45(1):9–14. https://doi.org/10.1161/01.HYP.0000151325.83008.b4.

    Article  PubMed  CAS  Google Scholar 

  18. Goodfriend TL, Calhoun DA. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension. 2004;43(3):518–24. https://doi.org/10.1161/01.HYP.0000116223.97436.e5.

    Article  PubMed  CAS  Google Scholar 

  19. Cardillo C, Campia U, Iantorno M, Panza JA. Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension. 2004;43(1):36–40. https://doi.org/10.1161/01.HYP.0000103868.45064.81.

    Article  PubMed  CAS  Google Scholar 

  20. Blood Pressure Lowering Treatment Trialists C, Turnbull F, Neal B, Ninomiya T, Algert C, Arima H, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ. 2008;336(7653):1121–3. https://doi.org/10.1136/bmj.39548.738368.be.

    Article  Google Scholar 

  21. de Simone G, Wachtell K, Palmieri V, Hille DA, Beevers G, Dahlof B, et al. Body build and risk of cardiovascular events in hypertension and left ventricular hypertrophy: the LIFE (Losartan Intervention For Endpoint reduction in hypertension) study. Circulation. 2005;111(15):1924–31. https://doi.org/10.1161/01.CIR.0000161799.91577.0A.

    Article  PubMed  Google Scholar 

  22. Weber MA, Jamerson K, Bakris GL, Weir MR, Zappe D, Zhang Y, et al. Effects of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomised controlled trial. Lancet. 2013;381(9866):537–45. https://doi.org/10.1016/S0140-6736(12)61343-9.

    Article  PubMed  Google Scholar 

  23. Reisin E, Graves JW, Yamal JM, Barzilay JI, Pressel SL, Einhorn PT, et al. Blood pressure control and cardiovascular outcomes in normal-weight, overweight, and obese hypertensive patients treated with three different antihypertensives in ALLHAT. J Hypertens. 2014;32(7):1503–13. https://doi.org/10.1097/hjh.0000000000000204(discussion 13).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jordan J, Yumuk V, Schlaich M, Nilsson PM, Zahorska-Markiewicz B, Grassi G, et al. Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and difficult to treat arterial hypertension. J Hypertens. 2012;30(6):1047–55. https://doi.org/10.1097/HJH.0b013e3283537347.

    Article  PubMed  CAS  Google Scholar 

  25. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of the Obesity Society and the American Society of Hypertension. J Clin Hypertens. 2013;15(1):14–33. https://doi.org/10.1111/jch.12049.

    Article  CAS  Google Scholar 

  26. Higgins JPT, Altman DG. Assessing risk of bias in included studies. Cochrane handbook for systermatic reviews of interventions West Sussex. Hoboken: Wiley; 2008. p. 187–241.

    Chapter  Google Scholar 

  27. Altman DG, Bland JM. Detecting skewness from summary information. BMJ. 1996;313(7066):1200. https://doi.org/10.1136/bmj.313.7066.1200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176(8):1091–6. https://doi.org/10.1503/cmaj.060410.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, Rosenthal T, et al. Morbidity and mortality in patients randomised to double-blind treatment with a long-acting calcium-channel blocker or diuretic in the International Nifedipine GITS study: intervention as a Goal in Hypertension Treatment (INSIGHT). Lancet. 2000;356(9227):366–72. https://doi.org/10.1016/S0140-6736(00)02527-7.

    Article  PubMed  CAS  Google Scholar 

  31. Rosei EA, Dal Palu C, Leonetti G, Magnani B, Pessina A, Zanchetti A. Clinical results of the verapamil in hypertension and atherosclerosis study. VHAS Investigators. J Hypertens. 1997;15(11):1337–44.

    Article  CAS  PubMed  Google Scholar 

  32. Officers A, Coordinators for the ACRGTA, Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Jama. 2002;288(23):2981–97.

    Article  Google Scholar 

  33. Borhani NO, Mercuri M, Borhani PA, Buckalew VM, Canossa-Terris M, Carr AA, et al. Final outcome results of the Multicenter Isradipine Diuretic Atherosclerosis Study (MIDAS). A randomized controlled trial. Jama. 1996;276(10):785–91.

    Article  CAS  PubMed  Google Scholar 

  34. Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Shi V, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359(23):2417–28. https://doi.org/10.1056/NEJMoa0806182.

    Article  PubMed  CAS  Google Scholar 

  35. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366(9489):895–906. https://doi.org/10.1016/S0140-6736(05)67185-1.

    Article  PubMed  CAS  Google Scholar 

  36. Zanchetti A, Bond MG, Hennig M, Neiss A, Mancia G, Dal Palu C, et al. Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation. 2002;106(19):2422–7.

    Article  CAS  PubMed  Google Scholar 

  37. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. Jama. 2003;290(21):2805–16. https://doi.org/10.1001/jama.290.21.2805.

    Article  PubMed  CAS  Google Scholar 

  38. Wing LM, Reid CM, Ryan P, Beilin LJ, Brown MA, Jennings GL, et al. A comparison of outcomes with angiotensin-converting–enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J Med. 2003;348(7):583–92. https://doi.org/10.1056/NEJMoa021716.

    Article  PubMed  CAS  Google Scholar 

  39. The Australian therapeutic trial in mild hypertension. Report by the Management Committee. Lancet. 1980;1(8181):1261–7.

    Google Scholar 

  40. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). Jama. 1991;265(24):3255–64.

    Article  Google Scholar 

  41. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995–1003. https://doi.org/10.1016/S0140-6736(02)08089-3.

    Article  PubMed  CAS  Google Scholar 

  42. Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet. 2004;363(9426):2022–31. https://doi.org/10.1016/S0140-6736(04)16451-9.

    Article  PubMed  CAS  Google Scholar 

  43. Estacio RO, Jeffers BW, Hiatt WR, Biggerstaff SL, Gifford N, Schrier RW. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med. 1998;338(10):645–52. https://doi.org/10.1056/NEJM199803053381003.

    Article  PubMed  CAS  Google Scholar 

  44. Wilhelmsen L, Berglund G, Elmfeldt D, Fitzsimons T, Holzgreve H, Hosie J, et al. Beta-blockers versus diuretics in hypertensive men: main results from the HAPPHY trial. J Hypertens. 1987;5(5):561–72.

    Article  CAS  PubMed  Google Scholar 

  45. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59. https://doi.org/10.1056/NEJMoa0801317.

    Article  PubMed  CAS  Google Scholar 

  46. Black HR, Davis B, Barzilay J, Nwachuku C, Baimbridge C, Marginean H, et al. Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or lisinopril as initial treatment for hypertension: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Diabetes Care. 2008;31(2):353–60. https://doi.org/10.2337/dc07-1452.

    Article  PubMed  CAS  Google Scholar 

  47. Chapman N, Dobson J, Wilson S, Dahlof B, Sever PS, Wedel H, et al. Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension. 2007;49(4):839–45. https://doi.org/10.1161/01.HYP.0000259805.18468.8c.

    Article  PubMed  CAS  Google Scholar 

  48. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386(10008):2059–68. https://doi.org/10.1016/S0140-6736(15)00257-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Alvarez-Alvarez B, Abad-Cardiel M, Fernandez-Cruz A, Martell-Claros N. Management of resistant arterial hypertension: role of spironolactone versus double blockade of the renin-angiotensin-aldosterone system. J Hypertens. 2010;28(11):2329–35. https://doi.org/10.1097/HJH.0b013e32833d4c99.

    Article  PubMed  CAS  Google Scholar 

  50. Vaclavik J, Sedlak R, Plachy M, Navratil K, Plasek J, Jarkovsky J, et al. Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension. 2011;57(6):1069–75. https://doi.org/10.1161/HYPERTENSIONAHA.111.169961.

    Article  PubMed  CAS  Google Scholar 

  51. Krieger EM, Drager LF, Giorgi DMA, Pereira AC, Barreto-Filho JAS, Nogueira AR, et al. Spironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT randomized study (Resistant Hypertension Optimal Treatment). Hypertension. 2018;71(4):681–90. https://doi.org/10.1161/HYPERTENSIONAHA.117.10662.

    Article  PubMed  CAS  Google Scholar 

  52. Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. J Hypertens. 2013;31(10):2094–102. https://doi.org/10.1097/HJH.0b013e3283638b1a.

    Article  PubMed  CAS  Google Scholar 

  53. Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008;118(22):2259–67. https://doi.org/10.1161/CIRCULATIONAHA.107.762229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9. https://doi.org/10.1056/NEJMoa052256.

    Article  PubMed  CAS  Google Scholar 

  55. Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;119(24):3070–7. https://doi.org/10.1161/CIRCULATIONAHA.108.815944.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jamerson KA, Devereux R, Bakris GL, Dahlof B, Pitt B, Velazquez EJ, et al. Efficacy and duration of benazepril plus amlodipine or hydrochlorothiazide on 24-hour ambulatory systolic blood pressure control. Hypertension. 2011;57(2):174–9. https://doi.org/10.1161/HYPERTENSIONAHA.110.159939.

    Article  PubMed  CAS  Google Scholar 

  57. Olde Engberink RH, Frenkel WJ, van den Bogaard B, Brewster LM, Vogt L, van den Born BJ. Effects of thiazide-type and thiazide-like diuretics on cardiovascular events and mortality: systematic review and meta-analysis. Hypertension. 2015;65(5):1033–40. https://doi.org/10.1161/HYPERTENSIONAHA.114.05122.

    Article  PubMed  CAS  Google Scholar 

  58. Carter BL, Ernst ME, Cohen JD. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension. 2004;43(1):4–9. https://doi.org/10.1161/01.HYP.0000103632.19915.0E.

    Article  PubMed  CAS  Google Scholar 

  59. Ernst ME, Carter BL, Goerdt CJ, Steffensmeier JJ, Phillips BB, Zimmerman MB, et al. Comparative antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure. Hypertension. 2006;47(3):352–8. https://doi.org/10.1161/01.HYP.0000203309.07140.d3.

    Article  PubMed  CAS  Google Scholar 

  60. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–115. https://doi.org/10.1161/HYP.0000000000000065.

    Article  PubMed  CAS  Google Scholar 

  61. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25. https://doi.org/10.1161/CIRCULATIONAHA.105.595496.

    Article  PubMed  CAS  Google Scholar 

  62. Angeli F, Verdecchia P, Reboldi GP, Gattobigio R, Bentivoglio M, Staessen JA, et al. Calcium channel blockade to prevent stroke in hypertension: a meta-analysis of 13 studies with 103,793 subjects. Am J Hypertens. 2004;17(9):817–22. https://doi.org/10.1016/j.amjhyper.2004.06.002.

    Article  PubMed  CAS  Google Scholar 

  63. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665. https://doi.org/10.1136/bmj.b1665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med. 2000;342(13):905–12. https://doi.org/10.1056/nejm200003303421301.

    Article  PubMed  CAS  Google Scholar 

  65. Opie LH, Yusuf S, Kubler W. Current status of safety and efficacy of calcium channel blockers in cardiovascular diseases: a critical analysis based on 100 studies. Prog Cardiovasc Dis. 2000;43(2):171–96. https://doi.org/10.1053/pcad.2000.7010.

    Article  PubMed  CAS  Google Scholar 

  66. Carlberg B, Samuelsson O, Lindholm LH. Atenolol in hypertension: is it a wise choice? Lancet. 2004;364(9446):1684–9. https://doi.org/10.1016/S0140-6736(04)17355-8.

    Article  PubMed  CAS  Google Scholar 

  67. Lindholm LH, Carlberg B, Samuelsson O. Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet. 2005;366(9496):1545–53. https://doi.org/10.1016/S0140-6736(05)67573-3.

    Article  PubMed  CAS  Google Scholar 

  68. Kuyper LM, Khan NA. Atenolol vs nonatenolol beta-blockers for the treatment of hypertension: a meta-analysis. Can J Cardiol. 2014;30(5 Suppl):S47–53. https://doi.org/10.1016/j.cjca.2014.01.006.

    Article  PubMed  Google Scholar 

  69. Wright JT Jr, Probstfield JL, Cushman WC, Pressel SL, Cutler JA, Davis BR, et al. ALLHAT findings revisited in the context of subsequent analyses, other trials, and meta-analyses. Arch Intern Med. 2009;169(9):832–42. https://doi.org/10.1001/archinternmed.2009.60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Egan BM, Lackland DT, Cutler NE. Awareness, knowledge, and attitudes of older americans about high blood pressure: implications for health care policy, education, and research. Arch Intern Med. 2003;163(6):681–7.

    Article  PubMed  Google Scholar 

  71. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. https://doi.org/10.1093/eurheartj/eht151.

    Article  PubMed  Google Scholar 

  72. Barzilay JI, Davis BR, Cutler JA, Pressel SL, Whelton PK, Basile J, et al. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166(20):2191–201. https://doi.org/10.1001/archinte.166.20.2191.

    Article  PubMed  CAS  Google Scholar 

  73. Whelton PK, Barzilay J, Cushman WC, Davis BR, Iiamathi E, Kostis JB, et al. Clinical outcomes in antihypertensive treatment of type 2 diabetes, impaired fasting glucose concentration, and normoglycemia: antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2005;165(12):1401–9. https://doi.org/10.1001/archinte.165.12.1401.

    Article  PubMed  CAS  Google Scholar 

  74. Wright JT Jr, Harris-Haywood S, Pressel S, Barzilay J, Baimbridge C, Bareis CJ, et al. Clinical outcomes by race in hypertensive patients with and without the metabolic syndrome: antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2008;168(2):207–17. https://doi.org/10.1001/archinternmed.2007.66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wassertheil-Smoller S, Fann C, Allman RM, Black HR, Camel GH, Davis B, The SHEP Cooperative Research Group, et al. Relation of low body mass to death and stroke in the systolic hypertension in the elderly program. Arch Internal Med. 2000;160(4):494–500.

    Article  CAS  Google Scholar 

  76. Group SR, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://doi.org/10.1056/nejmoa1511939.

    Article  Google Scholar 

  77. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313(6):603–15. https://doi.org/10.1001/jama.2014.18574.

    Article  PubMed  CAS  Google Scholar 

  78. Larochelle P, Tobe SW, Lacourciere Y. beta-Blockers in hypertension: studies and meta-analyses over the years. Can J Cardiol. 2014;30(5 Suppl):S16–22. https://doi.org/10.1016/j.cjca.2014.02.012.

    Article  PubMed  Google Scholar 

  79. Zhang Y, Sun N, Jiang X, Xi Y. Comparative efficacy of beta-blockers on mortality and cardiovascular outcomes in patients with hypertension: a systematic review and network meta-analysis. J Am Soc Hypertens. 2017;11(7):394–401. https://doi.org/10.1016/j.jash.2017.05.001.

    Article  PubMed  CAS  Google Scholar 

  80. Reboussin DM, Allen NB, Griswold ME, Guallar E, Hong Y, Lackland DT, et al. Systematic Review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e116–35. https://doi.org/10.1161/HYP.0000000000000067.

    Article  PubMed  CAS  Google Scholar 

  81. Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J, et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004;351(19):1952–61. https://doi.org/10.1056/NEJMoa042274.

    Article  PubMed  CAS  Google Scholar 

  82. Strauss MH, Hall AS. Angiotensin receptor blockers may increase risk of myocardial infarction: unraveling the ARB-MI paradox. Circulation. 2006;114(8):838–54. https://doi.org/10.1161/CIRCULATIONAHA.105.594986.

    Article  PubMed  Google Scholar 

  83. Verma S, Strauss M. Angiotensin receptor blockers and myocardial infarction. BMJ. 2004;329(7477):1248–9. https://doi.org/10.1136/bmj.329.7477.1248.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Savarese G, Gotto AM Jr, Paolillo S, D’Amore C, Losco T, Musella F, et al. Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. J Am Coll Cardiol. 2013;62(22):2090–9. https://doi.org/10.1016/j.jacc.2013.07.069.

    Article  PubMed  CAS  Google Scholar 

  85. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 4. Effects of various classes of antihypertensive drugs–overview and meta-analyses. J Hypertens. 2015;33(2):195–211. https://doi.org/10.1097/hjh.0000000000000447.

    Article  PubMed  CAS  Google Scholar 

  86. Bangalore S, Makani H, Radford M, Thakur K, Toklu B, Katz SD, et al. Clinical outcomes with beta-blockers for myocardial infarction: a meta-analysis of randomized trials. Am J Med. 2014;127(10):939–53. https://doi.org/10.1016/j.amjmed.2014.05.032.

    Article  PubMed  CAS  Google Scholar 

  87. Cheng J, Zhang W, Zhang X, Han F, Li X, He X, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA Intern Med. 2014;174(5):773–85. https://doi.org/10.1001/jamainternmed.2014.348.

    Article  PubMed  CAS  Google Scholar 

  88. Weber MA, Schiffrin EL, White WB, Mann S, Lindholm LH, Kenerson JG, et al. Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension. J Hypertens. 2014;32(1):3–15. https://doi.org/10.1097/HJH.0000000000000065.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mauricio de Assis Fontes for his helpful assistance in the preparation of this article.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally to the manuscript.

Corresponding author

Correspondence to Emilio Antonio Francischetti.

Ethics declarations

Funding

ESFC received grants from (1) Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (project E-26/202.938/2015; http://www.faperj.br/) and (2) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (process no. 307045/20161; http://www.cnpq.br/). The funders had no direct role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

All authors (EAF, VGA, LFSF, RSD, and ESFC) declare that they have no potential conflicts of interest that might be relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francischetti, E.A., de Abreu, V.G., da Silva Figueiredo, L.F. et al. Effects of Blood Pressure Lowering Agents on Cardiovascular Outcomes in Weight Excess Patients: A Systematic Review and Meta-analysis. Am J Cardiovasc Drugs 20, 447–470 (2020). https://doi.org/10.1007/s40256-019-00393-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-019-00393-x

Navigation