A Literature Review of Genetic Markers Conferring Impaired Response to Cardiovascular Drugs

Abstract

Pharmacogenetics is an emerging area of medicine, and more work is needed to fully integrate it into a clinical setting for the benefit of patients. Genetic markers can influence the action of many drugs, including those that prevent and treat cardiovascular conditions. Genotyping is not yet commonplace, but guidelines are being put in place to help practitioners determine the effect a genetic marker may have on certain drugs. With advancements in genetic technology and falling costs, genotyping could be available to all patients via a simple saliva test. This would be a cost-effective way for practitioners to determine the most effective treatment for individuals, reducing “trial and error,” adverse effects, and rehospitalization rates and increasing patient compliance. Cardiovascular diseases are the leading causes of death worldwide, so using the most effective medication to treat or prevent them is of utmost importance in reducing incidence and mortality.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    World Health Organization (WHO). (2017). Cardiovascular diseases (CVDs): Fact Sheet. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 10 Aug 2017.

  2. 2.

    Prescriptions Dispensed in the Community: England 2005-2015. (2016). 1st ed. [ebook] Health and Social Care Information Centre. http://content.digital.nhs.uk/catalogue/PUB20664/pres-disp-com-eng-2005-1. Accessed 17 Aug 2017.

  3. 3.

    Altman R. Pharmacogenomics: “noninferiority” is sufficient for initial implementation. Clin Pharmacol Ther. 2011;89(3):348–50.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Epstein RS, Moyer TP, Aubert RE, O’Kane DJ, Xia F, Verbrugge RR, Gage BF, Teagarden JR. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol. 2010;55(25):2804–12.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Caudle K, Klein T, Hoffman J, Muller D, Whirl-Carrillo M, Gong L, McDonagh E, Sangkuhl K, Thorn C, Schwab M, Agundez J, Freimuth R, Huser V, Michael Lee M, Iwuchukwu O, Crews K, Scott S, Wadelius M, Swen J, Tyndale R, Stein C, Roden D, Relling M, Williams M, Johnson S. Incorporation of pharmacogenomics into routine clinical practice: the clinical pharmacogenetics implementation consortium (CPIC) guideline development process. Curr Drug Metab. 2014;15(2):209–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Fda.gov. (2010). FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. https://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatientsandproviders/ucm203888.htm. Accessed 17 Aug 2017.

  7. 7.

    Mega J, Close S, Wiviott S, Shen L, Hockett R, Brandt J, Walker J, Antman E, Macias W, Braunwald E, Sabatine M. Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Pan Y, Chen W, Xu Y, Yi X, Han Y, Yang Q, Li X, Huang L, Johnston S, Zhao X, Liu L, Zhang Q, Wang G, Wang Y, Wang Y. Genetic polymorphisms and clopidogrel efficacy for acute ischemic stroke or transient ischemic attack clinical perspective. Circulation. 2016;135(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Wang Y, Yan B, Liew D, Lee V. Cost-effectiveness of cytochrome P450 2C19 *2 genotype-guided selection of clopidogrel or ticagrelor in Chinese patients with acute coronary syndrome. Pharmacogenom J. 2017. https://doi.org/10.1038/tpj.2016.94.

    Article  Google Scholar 

  10. 10.

    Scott S, Sangkuhl K, Stein C, Hulot J, Mega J, Roden D, Klein T, Sabatine M, Johnson J, Shuldiner A. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Lobmeyer M, Wang L, Zineh I, Turner S, Gums J, Chapman A, Cooper-DeHoff R, Beitelshees A, Bailey K, Boerwinkle E, Pepine C, Johnson J. Polymorphisms in genes coding for GRK2 and GRK5 and response differences in antihypertensive-treated patients. Pharmacogenet Genom. 2011;21(1):42–9.

    Article  CAS  Google Scholar 

  12. 12.

    Liggett S, Cresci S, Kelly R, Syed F, Matkovich S, Hahn H, Diwan A, Martini J, Sparks L, Parekh R, Spertus J, Koch W, Kardia S, Dorn G II. A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat Med. 2008;14(5):510–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Traynham C, Cannavo A, Zhou Y, Vouga A, Woodall B, Hullmann J, Ibetti J, Gold J, Chuprun J, Gao E, Koch W. Differential role of G protein-coupled receptor kinase 5 in physiological versus pathological cardiac hypertrophy. Circ Res. 2015;117(12):1001–12. 

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  14. 14.

    Traynham C, Hullmann J, Koch W. Canonical and non-canonical actions of GRK5 in the heart. J Mol Cell Cardiol. 2016;92:196–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Philipp M, Berger I, Just S, Caron M. Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development. J Biol Chem. 2014;289(38):26119–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Harris D, Cohn H, Pesant S, Eckhart A. GPCR signalling in hypertension: role of GRKs. Clin Sci. 2008;115(3):79–89.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Santulli G, Trimarco B, Iaccarino G. G-Protein-coupled receptor kinase 2 and hypertension. High Blood Press Cardiovasc Prev. 2013;20(1):5–12.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Liang M, Puri A, Devlin G. Heart rate and cardiovascular disease: an alternative to beta blockers. Cardiol Res Pract. 2009;2009:1–5.

    Article  Google Scholar 

  19. 19.

    Fox K, Ford I, Steg P, Tardif J, Tendera M, Ferrari R. Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med. 2014;371(12):1091–9.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Barron A, Zaman N, Cole G, Wensel R, Okonko D, Francis D. Systematic review of genuine versus spurious side-effects of beta-blockers in heart failure using placebo control: recommendations for patient information. Int J Cardiol. 2013;168(4):3572–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Morales D. Initiating beta-blockers in patients with asthma. Prescriber. 2014;25(19):9–10.

    Article  Google Scholar 

  22. 22.

    Inoue K. Managing adverse effects of glaucoma medications. Clin Ophthalmol. 2014;12(8):903–13. 

    Article  CAS  Google Scholar 

  23. 23.

    Curtis J, Sokol S, Wang Y, Rathore S, Ko D, Jadbabaie F, Portnay E, Marshalko S, Radford M, Krumholz H. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42(4):736–42.

    Article  PubMed  Google Scholar 

  24. 24.

    Fonarow G, Hsu J. Left ventricular ejection fraction. JACC Heart Fail. 2016;4(6):511–3.

    Article  PubMed  Google Scholar 

  25. 25.

    Taylor M. Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenom J. 2006;7(1):29–37.

    Article  CAS  Google Scholar 

  26. 26.

    Pacanowski M, Zineh I, Li H, Johnson B, Cooper-DeHoff R, Bittner V, McNamara D, Sharaf B, Bairey Merz C, Pepine C, Johnson J. Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. J Transl Med. 2008;6(1):11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    La Rosee K, Huntgeburth M, Rosenkranz S, Bohm M, Schnabel P. The Arg389Gly beta1-adrenoceptor gene polymorphism determines contractile response to catecholamines. Pharmacogenetics. 2004;14(11):711–6.

    Article  PubMed  Google Scholar 

  28. 28.

    Huntgeburth M, La Rosee K, ten Freyhaus H, Bohm M, Schnabel P, Hellmich M, Rosenkranz S. The Arg389Gly beta1-adrenoceptor gene polymorphism influences the acute effects of beta-adrenoceptor blockade on contractility in the human heart. Clin Res Cardiol. 2011;100(8):641–7.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci USA. 2006;103(30):11288–93.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Liu W, Fu K, Gao H, Shang Y, Wang Z, Jiang G, Zhang Y, Zhang W, Zhong M. β1 adrenergic receptor polymorphisms and heart failure: a meta-analysis on susceptibility, response to β-blocker therapy and prognosis. PLoS One. 2012;7(7):e37659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Kuruvilla M, Gurk-Turner C. A review of warfarin dosing and monitoring. Proc (Bayl Univ Med Cent). 2001;14(3):305–6.

    Article  CAS  Google Scholar 

  32. 32.

    Ageno W, Gallus A, Wittkowsky A, Crowther M, Hylek E, Palareti G. Oral anticoagulant therapy. Chest. 2012;141(2):e44S–88S.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Horton JD, Bushwick BM. Warfarin therapy: evolving strategies in anticoagulation. Am Fam Physician. 1999;59:635–46.

    PubMed  CAS  Google Scholar 

  34. 34.

    Johnson J, Gong L, Whirl-Carrillo M, Gage B, Scott S, Stein C, Anderson J, Kimmel S, Lee M, Pirmohamed M, Wadelius M, Klein T, Altman R. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001;40(8):587–603.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Gan GG, Phipps ME, Lee MM, Lu LS, Subramaniam RY, Bee PC, Chang SH. Contribution of VKORC1 and CYP2C9 polymorphisms in the interethnic variability of warfarin dose in Malaysian populations. Ann Hematol. 2011;90(6):635–64.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Owen R, Gong L, Sagreiya H, Klein T, Altman R. VKORC1 pharmacogenomics summary. Pharmacogenet Genom. 2010;20(10):642–4.

    Article  CAS  Google Scholar 

  38. 38.

    Fang M (2010) Current issues in patient adherence and persistence: focus on anticoagulants for the treatment and prevention of thromboembolism. Patient Preference Adher. 24(4):51–60. 

    Article  Google Scholar 

  39. 39.

    Sangkuhl K, Klein T, Altman R. Clopidogrel pathway. Pharmacogenet Genom. 2010;20(7):463–5.

    CAS  Google Scholar 

  40. 40.

    Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost. 2000;84(11):891–6.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA. Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry. 1991;30(13):3247–55.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Rao S, Uppugunduri C, Daali Y, Desmeules J, Dayer P, Krajinovic M, Ansari M. Transcriptional regulation of CYP2C19 and its role in altered enzyme activity. Curr Drug Metab. 2012;13(8):1196–204.

    Article  Google Scholar 

  43. 43.

    Dean, L. (2012). Clopidogrel Therapy and CYP2C19 Genotype. [online] Ncbi.nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK84114/. Accessed 7 Aug 2017.

  44. 44.

    NHS (2016) Clopidogrel - NHS Choices. [online] http://www.nhs.uk/conditions/Anti-platelets-clopidogrel/Pages/Introduction.aspx. Accessed 7 Aug 2017.

  45. 45.

    Judge H, Buckland R, Holgate C, Storey R. Glycoprotein IIb/IIIa and P2Y12receptor antagonists yield additive inhibition of platelet aggregation, granule secretion, soluble CD40L release and procoagulant responses. Platelets. 2005;16(7):398–407.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Schneider D. Anti-platelet therapy: glycoprotein IIb–IIIa antagonists. Br J Clin Pharmacol. 2011;72(4):672–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Wheeler G, Braden G, Bray P, Marciniak S, Mascelli M, Sane D. Reduced inhibition by abciximab in platelets with the PlA2 polymorphism. Am Heart J. 2002;143(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Lanni F, Santulli G, Izzo R, Rubattu S, Zanda B, Volpe M, et al. The PlA1/A2 polymorphism of glycoprotein IIIa and cerebrovascular events in hypertension: increased risk of ischemic stroke in high-risk patients. J Hypertens. 2007;25(3):551–6.

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Floyd C, Ellis B, Ferro A. The PlA1/A2 polymorphism of glycoprotein IIIa as a risk factor for stroke: a systematic review and meta-analysis. PLoS One. 2014;9(7):e100239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Bruzelius M, Bottai M, Sabater-Lleal M, Strawbridge R, Bergendal A, Silveira A, Sundström A, Kieler H, Hamsten A, Odeberg J. Predicting venous thrombosis in women using a combination of genetic markers and clinical risk factors. J Thromb Haemost. 2015;13(2):219–27.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Soria J, Morange P, Vila J, Souto J, Moyano M, Tregouet D, Mateo J, Saut N, Salas E, Elosua R. Multilocus genetic risk scores for venous thromboembolism risk assessment. J American Heart Assoc. 2014;3(5):e001060.

    Article  CAS  Google Scholar 

  52. 52.

    Aleksova A, Di Nucci M, Gobbo M, Bevilacqua E, Pradella P, Salam K, Barbati G, De Luca A, Mascaretti L, Sinagra G. Factor-V HR2 haplotype and thromboembolic disease. Acta Cardiol. 2015;70(6):707–11. https://doi.org/10.2143/AC.70.6.3120184.

    Article  PubMed  Google Scholar 

  53. 53.

    Fsrh.org (2017) FSRH Statement: venous thromboembolism (VTE) and hormonal contraception Nov 2014—Faculty of Sexual and Reproductive Healthcare. [online] http://www.fsrh.org/standards-and-guidance/documents/fsrhstatementvteandhormonalcontraception-november/. Accessed 14 Aug 2017.

  54. 54.

    Nnuh.nhs.uk (2017) Norfolk and Norwich University Hospitals NHS Foundation Trust » Contraception and Thrombophilia Screening G21 v1. [online] http://www.nnuh.nhs.uk/publication/contraception-and-thrombophilia-screening-g21-v1/. Accessed 14 Aug 2017.

  55. 55.

    Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40(9–10):575–84.

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Golomb B, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8(6):373–418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Ornelas WLHB (2008) SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359:789–799.

  58. 58.

    Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genom. 2006;16(12):873–9.

    Article  CAS  Google Scholar 

  59. 59.

    Chasman DI. Pharmacogenetic Study of Statin Therapy and Cholesterol Reduction. JAMA. 2004;291(23):2821.

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Krauss R, Mangravite L, Smith J, Medina M, Wang D, Guo X, et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation. 2008;117(12):1537–44.

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Medina MW, Sangkuhl K, Klein TE, Altman RB. PharmGKB: very important pharmacogene—HMGCR. Pharmacogenet Genom. 2011;21(2):98–101.

    Article  CAS  Google Scholar 

  62. 62.

    Mangravite L, Medina M, Cui J, Pressman S, Smith J, Rieder M, et al. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler Thromb Vasc Biol. 2010;30(7):1485–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. 63.

    Di Stasi S, MacLeod T, Winters J, Binder-Macleod S. Effects of statins on skeletal muscle: a perspective for physical therapists. Phys Ther. 2010;90(10):1530–42.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Brown M, Bussell J. Medication Adherence: WHO Cares? Mayo Clinic Proc. 2011;86(4):304–14.

    Article  Google Scholar 

  65. 65.

    Lee KS, Tsien RW. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983;302(5911):790–4.

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Khan IA. Clinical and therapeutic aspects of congenital and acquired long QT syndrome. Am J Med. 2002;112(1):58–66.

    Article  PubMed  Google Scholar 

  67. 67.

    Castro V, Clements C, Murphy S, Gainer V, Fava M, Weilburg J, Erb J., Churchill, S., Kohane, I., Iosifescu D, Smoller J, Perlis R. QT interval and antidepressant use: a cross sectional study of electronic health records. BMJ. 2013;346(jan29 3):f288.

  68. 68.

    Treuer AV, Gonzalez DR. NOS1AP modulates intracellular Ca2+ in cardiac myocytes and is up-regulated in dystrophic cardiomyopathy. Int J Physiol Pathophysiol Pharmacol. 2014;6(1):37–46.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Earle N, Ingles J, Bagnall R, Gray B, Crawford J, Smith W, Shelling A, Love D, Semsarian C, Skinner J. NOS1AP polymorphisms modify QTc interval duration but not cardiac arrest risk in hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2015;26(12):1346–51.

    Article  PubMed  Google Scholar 

  70. 70.

    Zhelyazkova-Savova M, Gancheva S, Sirakova V. Potential statin-drug interactions: prevalence and clinical significance. SpringerPlus. 2014;3(1):168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. 71.

    Jeffers T, Webster J, Petrie J. Atenolol once-daily in hypertension. Br J Clin Pharmacol. 1977;4:523–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. 72.

    National Clinical Guidelines Centre (UK) (2011). Stable Angina: Methods, Evidence & Guidance [Internet]. London: Royal College of Physicians (UK); (NICE Clinical Guidelines, No. 126.) 7, Beta blockers vs. calcium channel blockers. https://www.ncbi.nlm.nih.gov/books/NBK83601/. Accessed 8 Aug 2017.

  73. 73.

    Huffman JC, Stern TA. Neuropsychiatric consequences of cardiovascular medications. Dialog Clin Neurosci. 2007;9(1):29–45.

    Google Scholar 

  74. 74.

    Beitelshees AL, Navare H, Wang D, Gong Y, Wessel J, Moss JI, Langaee TY, Cooper-DeHoff RM, Sadee W, Pepine CJ, Schork NJ, Johnson JA. CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circ Cardiovasc Genet. 2009;2(4):362–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. 75.

    MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in-congestive heart failure (MERIT-HF). Lancet. 1999;353(9169):2001–7.

    Article  Google Scholar 

  76. 76.

    Goldner J. Metoprolol-induced visual hallucinations: a case series. J Med Case Rep. 2012;6(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    NHS (2016) Beta-blockers—NHS Choices. [online] http://www.nhs.uk/Conditions/Beta-blockers/Pages/Introduction.aspx. Accessed 8 Aug 2017.

  78. 78.

    Blake C, Kharasch E, Schwab M, Nagele P. A meta-analysis of CYP2D6 metabolizer phenotype and metoprolol pharmacokinetics. Clin Pharmacol Ther. 2013;94(3):394–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. 79.

    Hamadeh IS, Langaee TY, Dwivedi R, Garcia S, Burkley BM, Chapman AB, Johnson JA. Impact of CYP2D6 polymorphisms on clinical efficacy & tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96(2):175–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. 80.

    Campbell DJ. A review of perindopril in the reduction of cardiovascular events. Vasc Health Risk Manag. 2006;2(2):117–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. 81.

    Bernstein K, Giani J, Shen X, Gonzalez-Villalobos R. Renal angiotensin-converting enzyme and blood pressure control. Curr Opin Nephrol Hypertens. 2014;23(2):106–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. 82.

    McLean P, Ahluwalia A, Perretti M. Association between kinin B1 receptor expression and leukocyte trafficking across mouse mesenteric postcapillary venules. J Exp Med. 2000;192(3):367–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. 83.

    Hirooka K, Shiraga F. Potential role for angiotensin-converting enzyme inhibitors in the treatment of glaucoma. Clin Ophthalmol. 2007;1(3):217–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. 84.

    Mottl A, Shoham D, North K. Angiotensin II type 1 receptor polymorphisms and susceptibility to hypertension: a HuGE review. Genet Med. 2008;10(8):560–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. 85.

    Briet M, Schiffrin E. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol. 2010;6(5):261–73.

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Oemrawsingh R, Akkerhuis K, Van Vark L, Redekop W, Rudez G, Remme W, Bertrand M, Fox K, Ferrari R, Danser A, de Maat M, Simoons M, Brugts J, Boersma E. Individualized angiotensin-converting enzyme (ACE)-inhibitor therapy in stable coronary artery disease based on clinical and pharmacogenetic determinants: the PERindopril GENEtic (PERGENE) risk model. J Am Heart Assoc. 2016;5(3):e002688.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Bansal S, Chauhan D, Ramesh D, Barmare S, Chakraborty S. Blood pressure control and acceptability of Perindopril and its fixed dose combinations with Amlodipine or Indapamide, in younger patients with hypertension. Indian Heart J. 2014;66(6):635–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Loboz K, Shenfield GM. Drug combinations and impaired renal function—the ‘triple whammy’. Br J Clin Pharmacol. 2005;59(2):239–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Ashihara H, Crozier A. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res. 1999;30:117–205.

    Article  CAS  Google Scholar 

  90. 90.

    Cappelletti S, Daria P, Sani G, Aromatario M. Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol. 2015;13(1):71–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. 91.

    Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev. 1992;17(2):139–70.

    Article  PubMed  CAS  Google Scholar 

  92. 92.

    Snel J, Lorist MM. Effects of caffeine on sleep and cognition. Prog Brain Res. 2011;190:105–17.

    Article  PubMed  Google Scholar 

  93. 93.

    Ribeiro J, Sebastião A. Caffeine and adenosine. J Alzheimer’s Dis. 2010;20(s1):S3–15.

    Article  CAS  Google Scholar 

  94. 94.

    Begas E, Kouvaras E, Tsakalof A, Papakosta S, Asprodini E. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed Chromatogr. 2007;21(2):190–200.

    Article  PubMed  CAS  Google Scholar 

  95. 95.

    Welsh E, Bara A, Barley E, Cates C. Caffeine for asthma. Cochrane Database Syst Rev. 2010;20(1):1–35. 

    Google Scholar 

  96. 96.

    Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63(6):537–46.

    Article  PubMed  CAS  Google Scholar 

  97. 97.

    Cornelis M, El-Sohemy A, Kabagambe E, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295(10):1135.

    Article  PubMed  CAS  Google Scholar 

  98. 98.

    Ubiquitous Pharmacogenetics Consortium (U-PGx). (2017). www.upgx.eu/. Accessed 17 Aug 2017.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdullah Sabyah.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Hitesh Shukla, Jessica Mason, and Abdullah Sabyah have no conflicts of interest that might be relevant to the contents of this manuscript. The authors declare that the text of the manuscript is part of a literature review article under which the markers discussed are part of a gene panel list used by the “Heart DNA Test” service for Rightangled Ltd. The authors are employed by Rightangled Ltd.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shukla, H., Mason, J.L. & Sabyah, A. A Literature Review of Genetic Markers Conferring Impaired Response to Cardiovascular Drugs. Am J Cardiovasc Drugs 18, 259–269 (2018). https://doi.org/10.1007/s40256-018-0267-2

Download citation