Advertisement

American Journal of Cardiovascular Drugs

, Volume 17, Issue 6, pp 447–452 | Cite as

Clinical Outcomes in Trials Evaluating Lipid-Lowering Drugs

  • Julie Butters
  • Alex Brown
  • Liddy Griffith
  • Susan Kim
  • Stephen J. Nicholls
Review Article
  • 244 Downloads

Abstract

While statins have formed the cornerstone of strategies for cardiovascular prevention, the residual risk related to low-density lipoprotein cholesterol (LDL-C) and other lipoprotein factors provides a landscape for development of new therapies. However, a number of lipid-modifying therapies have failed to reduce cardiovascular event rates in contemporary clinical trials of statin-treated patients. The factors considered in outcome measure selection for clinical trials of novel lipid-lowering therapies are reviewed. Evaluation of lipid-modifying drugs in clinical trials spans a spectrum from their effects on conventional circulating lipid parameters through to their impact on atherosclerotic plaque and ultimately clinical outcomes. The design of these trials has an important impact on the result and ultimate interpretation of these studies.

Notes

Compliance with ethical standards

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

Stephen J. Nicholls has received research support from Amgen, AstraZeneca, Cerenis, Eli Lilly, Novartis, Resverlogix, Roche, and Sanofi-Regeneron and is a consultant for AstraZeneca, Boehringer Ingelheim, CSL Behring, Kowa, Eli Lilly, Merck, Takeda, Pfizer, Roche, and Sanofi-Regeneron. Alex Brown has received research support from Sanofi-Regeneron. Julie Butters, Liddy Griffith, and Susan Kim have no potential conflicts to disclose.

References

  1. 1.
    Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.CrossRefPubMedGoogle Scholar
  2. 2.
    Cholesterol Treatment Trialists C, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.CrossRefGoogle Scholar
  3. 3.
    Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889–934.CrossRefPubMedGoogle Scholar
  4. 4.
    Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37:2999–3058.CrossRefPubMedGoogle Scholar
  5. 5.
    Libby P. The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol. 2005;46:1225–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Mora S, Otvos JD, Rifai N, Rosenson RS, Buring JE, Ridker PM. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Jacobson TA, Ito MK, Maki KC, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1—executive summary. J Clin Lipidol. 2014;8:473–88.CrossRefPubMedGoogle Scholar
  9. 9.
    Stroes ES, Thompson PD, Corsini A, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J. 2015;36:1012–22.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Banach M, Rizzo M, Toth PP, et al. Statin intolerance—an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Arch Med Sci. 2015;11:1–23.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Barter P, Gotto AM, LaRosa JC, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357:1301–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Miller M, Cannon CP, Murphy SA, Qin J, Ray KK, Braunwald E. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol. 2008;51:724–30.CrossRefPubMedGoogle Scholar
  13. 13.
    AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, et al. Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N Engl J Med. 2011;365(24):2255–67.Google Scholar
  14. 14.
    HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med 2014;371:203–12.Google Scholar
  15. 15.
    Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.CrossRefPubMedGoogle Scholar
  17. 17.
    Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kallend DG, Reijers JA, Bellibas SE, et al. A single infusion of MDCO-216 (ApoA-1 Milano/POPC) increases ABCA1-mediated cholesterol efflux and pre-beta 1 HDL in healthy volunteers and patients with stable coronary artery disease. Eur Heart J Cardiovasc Pharmacother. 2016;2:23–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Nicholls SJ, Ruotolo G, Brewer HB, et al. Cholesterol efflux capacity and pre-beta-1 HDL concentrations are increased in dyslipidemic patients treated with evacetrapib. J Am Coll Cardiol. 2015;66:2201–10.CrossRefPubMedGoogle Scholar
  20. 20.
    The Medicines Company discontinues development of MDCO-216, its investigational cholesterol efflux promoter [press release]. Parsippany, NJ: The Medicines Company. http://www.themedicinescompany.com/investors/news/medicines-company-discontinues-development-mdco-216-its-investigational-cholesterol. Accessed 7 Nov 2016.
  21. 21.
    Otocka-Kmiecik A, Mikhailidis DP, Nicholls SJ, Davidson M, Rysz J, Banach M. Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease? Prog Lipid Res. 2012;51:314–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Maierean S, Serban MC, Rizzo M, Lippi G, Sahebkar A, Banach M. The potential role of mitochondrial ATP synthase inhibitory factor 1 (IF1) in coronary heart disease: a literature review. Lipids Health Dis. 2017;16:35.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nicholls SJ, Kastelein JJ, Schwartz GG, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA. 2014;311:252–62.CrossRefPubMedGoogle Scholar
  24. 24.
    O’Donoghue ML, Braunwald E, White HD, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA. 2014;312:1006–15.CrossRefPubMedGoogle Scholar
  25. 25.
    Investigators S, White HD, Held C, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370:1702–11.CrossRefGoogle Scholar
  26. 26.
    Smilde TJ, van Wissen S, Wollersheim H, Trip MD, Kastelein JJ, Stalenhoef AF. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet. 2001;357:577–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Ballantyne CM. Clinical trial endpoints: angiograms, events, and plaque instability. Am J Cardiol. 1998;82:5M–11M.CrossRefPubMedGoogle Scholar
  28. 28.
    Nicholls SJ, Ballantyne CM, Barter PJ, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011;365:2078–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Nicholls SJ, Puri R, Anderson T, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316:2373–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292–300.CrossRefPubMedGoogle Scholar
  31. 31.
    Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J. 2015;36:2984–7.PubMedGoogle Scholar
  33. 33.
    Banach M, Serban C, Sahebkar A, et al. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med. 2015;13:229.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol. 2013;62:21–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Serruys PW, Garcia-Garcia HM, Buszman P, et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008;118:1172–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Rudd JHF, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-Fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Emami H, Vucic E, Subramanian S, et al. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis. 2015;240:490–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Gaztanaga J, Farkouh M, Rudd JH, et al. A phase 2 randomized, double-blind, placebo-controlled study of the effect of VIA-2291, a 5-lipoxygenase inhibitor, on vascular inflammation in patients after an acute coronary syndrome. Atherosclerosis. 2015;240:53–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.CrossRefPubMedGoogle Scholar
  40. 40.
    Irkle A, Vesey AT, Lewis DY, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Comm. 2015;6:7495.CrossRefGoogle Scholar
  41. 41.
    Besler C, Heinrich K, Rohrer L, et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest. 2011;121:2693–708.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010;375:1875–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.CrossRefPubMedGoogle Scholar
  44. 44.
    Gibson CM, Korjian S, Tricoci P, et al. Rationale and design of Apo-I Event Reduction in Ischemic Syndromes I (AEGIS-I): a phase 2b, randomized, placebo-controlled, dose-ranging trial to investigate the safety and tolerability of CSL112, a reconstituted, infusible, human apoA-I, after acute myocardial infarction. Am Heart J. 2016;180:22–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Cannon CP, Shah S, Dansky HM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363:2406–15.CrossRefPubMedGoogle Scholar
  46. 46.
    Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118:547–63.CrossRefPubMedGoogle Scholar
  47. 47.
    Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57:1953–75.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–53.CrossRefPubMedGoogle Scholar
  49. 49.
    Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J Am Coll Cardiol. 2015;65:1552–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Tardif JC, Rheaume E, Lemieux Perreault LP, et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ Cardiovasc Genet. 2015;8(2):372–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Julie Butters
    • 1
  • Alex Brown
    • 1
  • Liddy Griffith
    • 1
  • Susan Kim
    • 1
  • Stephen J. Nicholls
    • 1
  1. 1.South Australian Health and Medical Research InstituteUniversity of AdelaideAdelaideAustralia

Personalised recommendations