Skip to main content
Log in

Effects of N-Acetylcysteine on the Cardiac Remodeling Biomarkers and Major Adverse Events Following Acute Myocardial Infarction: A Randomized Clinical Trial

  • Original Research Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Aims

The aims of this study were to evaluate the effects of N-acetylcysteine (NAC) on cardiac remodeling and major adverse events following acute myocardial infarction (AMI).

Methods

In a prospective, double-blind, randomized clinical trial, the effect of NAC on the serum levels of cardiac biomarkers was compared with that of placebo in 98 patients with AMI. Also, the patients were followed up for a 1-year period for major adverse cardiac events (MACE), including the occurrence of recurrent myocardial infarction, death, and need for target vessel revascularization.

Results

In patients who received NAC, the serum levels of matrix metalloproteinase (MMP)-9 and MMP-2 after 72 h were significantly lower than those in the placebo group (p = 0.014 and p = 0.045, respectively). The length of hospitalization in patients who received NAC was significantly shorter than that in the placebo group (p = 0.024). With respect to MACE, there was a significant difference between those who received NAC (14 %) and those patients on placebo (25 %) (p = 0.024). Re-infarction took place in 4 % of patients in the NAC group as compared with 16.7 % in patients who received placebo (p = 0.007).

Conclusion

NAC can be beneficial in preventing early remodeling by reducing the level of MMP-2 and MMP-9. Moreover, NAC decreased the length of hospital stays in patients after AMI. By decreasing MACE, NAC could possibly be introduced as a ‘magic bullet’ in the pharmacotherapy of patients with AMI. Further studies are needed to elucidate NAC’s role in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weisman HF, Healy B. Myocardial scar expansion, scar extension and reinfarction: pathophysiological concepts. Prog Cardiovasc Dis. 1987;30:73–110.

    Article  CAS  PubMed  Google Scholar 

  2. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix. When is enough enough? Circulation. 2003;108:1395–403.

    Article  PubMed  Google Scholar 

  3. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000; 101:2981–998.

    Google Scholar 

  4. Volpi A, De Vita C, Franzosi MG, Geraci E, Maggioni AP, Mauri F, et al. Determinants of 6-month mortality in survivors of myocardial infarction after thrombolysis: results of the GISSI-2 data base. Circulation. 1993;88:416–29.

    Article  CAS  PubMed  Google Scholar 

  5. St John Sutton M, Lee D, Rouleau JL, Goldman S, Plappert T, Braunwald E, Pfeffer MA. Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation. 2003; 107:2577–582.

    Google Scholar 

  6. Ishii H, Amano T, Matsubara T, Murohara T. Pharmacological intervention for prevention of left ventricular remodeling and improving prognosis in myocardial infarction. Circulation. 2008;118:2710–8.

    Article  PubMed  Google Scholar 

  7. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999;23:3063–70.

    Article  Google Scholar 

  8. Kelly D, Cockerill G, Ng LL, Thompsom M, Khan S, Samani NJ. Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J. 2007;28(6):711–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. de Lemos JA, McGuire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003;362:316–22.

    Article  PubMed  Google Scholar 

  10. Talwar S, Squire IB, Downie PF, McCullough AM, Campton MC, Davies JE, et al. Profile of plasma N-terminal pro BNP following acute myocardial infarction; correlation with left ventricular systolic dysfunction. Eur Heart J. 2000;21:1514–21.

    Article  CAS  PubMed  Google Scholar 

  11. Mayr A, Mair J, Klug G, Schocke M, Pedarnig K, Trieb T, et al. Cardiac troponin T and creatine kinase predict mid-term infarct size and left ventricular function after acute myocardial infarction: a cardiac MR study. J Magn Reson Imaging. 2011;33:847–54.

    Article  PubMed  Google Scholar 

  12. Kelly GS. Clinical applications of N-acetylcysteine. Alt Med Rev. 1998;3:114–27.

    CAS  Google Scholar 

  13. Pendyala L, Creaven PJ. Pharmacokinetic and pharmacodynamic studies of N acetylcysteine, a potential chemopreventive agent during a phase I trial. Cancer Epidemiol Biomarkers Prev. 1995;4:245–51.

    CAS  PubMed  Google Scholar 

  14. Gibson KR, Winterburn TJ, Barrett F, Sharma S, MacRury SM, Megson IL. Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with type-2 diabetes. Cardiovasc Diabetol. 2011;10:43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sochman J. N-acetylcysteine in acute cardiology: 10 years later: what do we know and what would we like to know? J Am Coll Cardiol. 2002;39(9):1422–8.

    Article  CAS  PubMed  Google Scholar 

  16. Talasaz AH, Khalili H, Fahimi F, Salarifar M. Potential role of N-acetylcysteine in cardiovascular disorders. Therapy. 2011;8:237–45.

    Article  CAS  Google Scholar 

  17. Sochman J, Peregrin JH. Total recovery of left ventricular function after acute myocardial infarction: comprehensive therapy with streptokinase, N-acetylcysteine and percutaneous transluminal coronary angioplasty. Int J Cardiol. 1992;35:116–8.

    Article  CAS  PubMed  Google Scholar 

  18. Sochman J, Vrbska J, Musilova B, Rocek M. Infarct size limitation: acute N-acetylcysteine defense (ISLAND) trial: start of the study. Int J Cardiol. 1995;49:181–2.

    Article  CAS  PubMed  Google Scholar 

  19. Sochman J, Vrbská J, Musilová B, Rocek M. Infarct size limitation: acute N-acetylcysteine defense (ISLAND trial): preliminary analysis and report after the first 30 patients. Clin Cardiol. 1996;19:94–100.

    Article  CAS  PubMed  Google Scholar 

  20. Bourraindeloup M, Adamy C, Candiani G, Cailleret M, Bourin MC, Badoual T, et al. N-acetylcysteine treatment normalizes serum tumor necrosis factor-alpha level and hinders the progression of cardiac injury in hypertensive rats. Circulation. 2004;110:2003–9.

    Article  CAS  PubMed  Google Scholar 

  21. Nascimento MM, Suliman ME, Silva M, Chinaglia T, Marchioro J, Hayashi SY, et al. Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Perit Dial Int. 2010;30:336–42.

    Article  CAS  PubMed  Google Scholar 

  22. Dhalla NS, Elmoselhi AB, Hata T, Makino A. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47:446–56.

    Article  CAS  PubMed  Google Scholar 

  23. Tziakas DN, Chalikias GK, Hatzinikolaou EI, Stakos DA, Tentes IK, Kortsaris A, et al. N-terminal Pro-B-type natriuretic peptide and matrix metalloproteinases in early and late left ventricular remodeling after acute myocardial infarction. Am J Cardiol. 2005;96:31–4.

    Article  CAS  PubMed  Google Scholar 

  24. Bril A, Percevault-Albadini J, Landais J, Toseland C, Gout B. Ventricular remodelling and tolerance to ischaemia in rabbits with myocardial infarction. J Mol Cell Cardiol. 1994;26:322–30.

    Google Scholar 

  25. Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, et al. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Heart Circ Physiol. 2003;285:H1229–35.

    CAS  Google Scholar 

  26. Wang W, Schulze C, Suarez-Pinzon WL, Dyck JRB, Sawicki G, et al. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation. 2002;106:1543–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sugiura H, Ichikawa T, Liu X, Kobayashi T, Wang XQ, Kawasaki S, et al. N-acetyl-l-cysteine inhibits TGF-beta1-induced profibrotic responses in fibroblasts. Pulm Pharmacol Ther. 2009;22:487–91.

    Article  CAS  PubMed  Google Scholar 

  28. Liu RM, Liu Y, Forman HJ, Olman M, Tarpey MM. Glutathione regulates transforming growth factor-beta-stimulated collagen production in fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2004;286:L121–8.

    Article  CAS  PubMed  Google Scholar 

  29. Felton VM, Borok Z, Willis BC. N-acetylcysteine inhibits alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2009;297:L805–12.

    Article  CAS  PubMed  Google Scholar 

  30. Li YY, McTiernan CF, Feldman AM. Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res. 1999;42:162–72.

    Article  CAS  PubMed  Google Scholar 

  31. Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, et al. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor a can be modulated by anti-tumor necrosis factor a therapy. Proc Natl Acad Sci USA. 2000;97:12746–51.

    Article  CAS  PubMed  Google Scholar 

  32. Cailleret M, Amadou A, Andrieu-Abadie N, Nawrocki A, Adamy C, Ait-Mamar B, et al. N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation. 2004;109:406–11.

    Article  CAS  PubMed  Google Scholar 

  33. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, et al. Tumor necrosis factor alpha induced apoptosis in cardiac myocytes: involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest. 1996;98:2854–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Staal FJ, Roederer M, Herzenberg LA. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA. 1990;87:9943–7.

    Article  CAS  PubMed  Google Scholar 

  35. Landmesser U, Wollert KC, Drexler H. Potential novel pharmacological therapies for myocardial remodeling. Cardiovasc Res. 2009;81:519–27.

    Article  CAS  PubMed  Google Scholar 

  36. Brunet J, Boily MJ, Cordeau S, Des Rosiers C. Effects of N-acetylcysteine in the rat heart reperfused after low-flow ischemia: evidence for a direct scavenging of hydroxyl radicals and a nitric oxide-dependent increase in coronary flow. Free Radic Biol Med. 1995;19:627–38.

    Article  CAS  PubMed  Google Scholar 

  37. De Mattia G, Bravi MC, Laurenti O, Cassone-Faldetta M, Proietti A, De Luca O, et al. Reduction of oxidative stress by oral N-acetyl-l-cysteine treatment decreases plasma soluble vascular adhesion molecule-1 concentrations in non-obese, nondyslipidaemic, normotensive, patients with non-insulin-dependent diabetes. Diabetologia. 1998;41:1392–6.

    Article  PubMed  Google Scholar 

  38. Carroll JE, Howard EF, Hess DC, Wakade CG, Chen Q, Chen C. Nuclear factor-kappa B activation during cerebral reperfusion: effect of attenuation with N-acetylcysteine treatment. Mol Brain Res. 1998;56:186–91.

    Article  CAS  PubMed  Google Scholar 

  39. Suter PM, Domenighetti G, Schaller MD, Laverriere MC, Ritz R, Perret C. N-acetylcysteine enhances recovery from acute lung injury in man: a randomized, double-blind, placebo-controlled clinical study. Chest. 1994;105:190–4.

    Article  CAS  PubMed  Google Scholar 

  40. Spies C, Giese C, Meier-Hellmann A, Specht M, Hannemann L, Schaffartzik W, et al. The effect of prophylactically administered N-acetylcysteine on clinical indicators for tissue oxygenation during hyperoxic ventilation in cardiac risk patients. Anaesthesist. 1996;45:343–50.

    Article  CAS  PubMed  Google Scholar 

  41. Chen F, Lewis W, Hollander JM, Baseler WA, Finkel MS. N-acetyl cysteine reverses myocardial dysfunction in HIV Tat Cardiomyopathy. J Appl Physiol. 2012;113(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  42. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008;75:346–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhou S, Feely J, Spiers JP, Mahmud A. Matrix metalloproteinase-9 polymorphism contributes to blood pressure and arterial stiffness in essential hypertension. J Hum Hypertens. 2007;21:861–7.

    Article  CAS  PubMed  Google Scholar 

  44. Derosa G, D’Angelo A, Ciccarelli L, Piccinni MN, Pricolo F, Salvadeo S, et al. Matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium. 2006;13:227–31.

    Article  CAS  PubMed  Google Scholar 

  45. Rodrigues SF, Tran ED, Fortes ZB, Schmid-Schönbein GW. Matrix metalloproteinases cleave the β2-adrenergic receptor in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2010;299:H25–35.

    Article  CAS  PubMed  Google Scholar 

  46. Derosa G, D’Angelo A, Scalise F, Avanzini M, Tinelli C, Peros E, et al. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart Vessels. 2007;22:361–70.

    Article  PubMed  Google Scholar 

  47. Death AK, Fisher EJ, McGrath KC, Yue DK. High glucose alters matrix metalloproteinase in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis. 2003;168:263–9.

    Article  CAS  PubMed  Google Scholar 

  48. Omland T. Advances in congestive heart failure management in the intensive care unit: B-type natriuretic peptides in evaluation of acute heart failure. Crit Care Med. 2008;36((Suppl.)):S17–27.

    Article  CAS  PubMed  Google Scholar 

  49. Baker WL, Anglade MW, Baker EL, White MW, Kluger J, Coleman CI. Use of N-acetylcysteine to reduce post-cardiothoracic surgery complications: a meta-analysis. Eur J Cardiothorac Surg. 2009;35(3):521–7.

    Article  PubMed  Google Scholar 

  50. Yesilbursa D, Serdar A, Senturk T, Serdar Z, Sağ S, Cordan J. Effect of N-acetylcysteine on oxidative stress and ventricular function in patients with myocardial infarction. Heart Vessels. 2006;21(1):33–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Office of the Vice-Chancellor for Research of the Tehran University of Medical Sciences. The authors appreciate Tehran Heart Center nursing, laboratory, and emergency department staff for their valuable participation in this work. We also would like to thank Dr. Jamshid Salamzadeh for his kind support.

Conflicts of interest

The authors have no conflicts of interest regarding this work.

Funding

The authors have not received any financial support regarding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talasaz, A.H., Khalili, H., Fahimi, F. et al. Effects of N-Acetylcysteine on the Cardiac Remodeling Biomarkers and Major Adverse Events Following Acute Myocardial Infarction: A Randomized Clinical Trial. Am J Cardiovasc Drugs 14, 51–61 (2014). https://doi.org/10.1007/s40256-013-0048-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-013-0048-x

Keywords

Navigation