Pharmacologic Treatment of Hypertension in Patients With Chronic Kidney Disease

Abstract

Hypertension remains an important cause of morbidity and mortality in patients with chronic kidney disease. It both contributes to and is a consequence of chronic renal dysfunction. There is a high prevalence of hypertension in chronic kidney disease, and rates of control remain sub-optimal. Numerous studies have highlighted the benefit of treating hypertension in reducing the overall mortality as well as progression of renal disease in this population. Non-pharmacologic treatment strategies remain the primary intervention in all patients but are insufficient on their own to control hypertension in most cases. Pharmacologic treatment recommendations, however, vary depending on the specific etiology of disease as well as patient characteristics. Though most classes of anti-hypertensive drugs can be used to lower blood pressure in chronic kidney disease, therapy needs to be selected based on the presence of specific co-morbidities as well as the etiology of the kidney disease. Most patients will require multi-drug therapy for achieving target blood pressure goals. This review discusses the pharmacologic options in management of hypertension in various forms of chronic kidney disease.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ridao N, Luno J, Garcia de Vinuesa S, et al. Prevalence of hypertension in renal disease. Nephrol Dial Transplant. 2001;16:70–3.

    PubMed  Article  Google Scholar 

  2. 2.

    Muntner P, Anderson A, Charleston J, et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2010;55(3):441–51.

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Hsu CY, McCulloch CE, Darbinian J, et al. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165(8):923–8.

    PubMed  Article  Google Scholar 

  4. 4.

    Gu Q, Burt VL, Dillon CF, et al. Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: the national health and nutrition examination survey, 2001 to 2010. Circulation. 2012;126(17):2105–14.

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Ostchega Y, Dillon CF, Hughes JP, et al. Trends in hypertension prevalence, awareness, treatment, and control in older U.S. adults: data from the National Health and Nutrition Examination Survey 1988 to 2004. J Am Geriatr Soc. 2007;55(7):1056–65.

    PubMed  Article  Google Scholar 

  6. 6.

    Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Anavekar NS, McMurray JJ, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004;351(13):1285–95.

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Tozawa M, Iseki K, Iseki C, et al. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension. 2003;41(6):1341–5.

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Tonelli M, Muntner P, Lloyd A, et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 2012;380(9844):807–14.

    PubMed  Article  Google Scholar 

  10. 10.

    Hemmelgarn BR, Manns BJ, Lloyd A, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303(5):423–9.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Mann JF, Gerstein HC, Pogue J, et al. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med. 2001;134(8):629–36.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Perkovic V, Ninomiya T, Arima H, et al. Chronic kidney disease, cardiovascular events, and the effects of perindopril-based blood pressure lowering: data from the PROGRESS study. J Am Soc Nephrol: JASN. 2007;18(10):2766–72.

    PubMed  Article  Google Scholar 

  13. 13.

    Solomon SD, Rice MM, Jablonski AJ, et al. Renal function and effectiveness of angiotensin-converting enzyme inhibitor therapy in patients with chronic stable coronary disease in the Prevention of Events with ACE inhibition (PEACE) trial. Circulation. 2006;114(1):26–31.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Strazzullo P, Galletti F, Barba G. Altered renal handling of sodium in human hypertension: short review of the evidence. Hypertension. 2003;41(5):1000–5.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Salem MM. Pathophysiology of hypertension in renal failure. Semin Nephrol. 2002;22(1):17–26.

    PubMed  Google Scholar 

  16. 16.

    Blaustein MP, Leenen FH, Chen L, et al. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol. 2012;302(5):H1031–49.

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Vasavada N, Agarwal R. Role of excess volume in the pathophysiology of hypertension in chronic kidney disease. Kidney Int. 2003;64(5):1772–9.

    PubMed  Article  Google Scholar 

  18. 18.

    Agarwal R, Alborzi P, Satyan S, et al. Dry-weight reduction in hypertensive hemodialysis patients (DRIP): a randomized, controlled trial. Hypertension. 2009;53(3):500–7.

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Weidmann P, Maxwell MH, Lupu AN, et al. Plasma renin activity and blood pressure in terminal renal failure. N Engl J Med. 1971;285(14):757–62.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Palmer BF. Renal dysfunction complicating the treatment of hypertension. N Engl J Med. 2002;347(16):1256–61.

    PubMed  Article  Google Scholar 

  21. 21.

    Apperloo AJ, de Zeeuw D, de Jong PE. A short-term antihypertensive treatment-induced fall in glomerular filtration rate predicts long-term stability of renal function. Kidney Int. 1997;51(3):793–7.

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Tinucci T, Abrahao SB, Santello JL, et al. Mild chronic renal insufficiency induces sympathetic overactivity. J Hum Hypertens. 2001;15(6):401–6.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Converse RL Jr, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8.

    PubMed  Article  Google Scholar 

  24. 24.

    Klein IH, Ligtenberg G, Oey PL, et al. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J Am Soc Nephrol: JASN. 2001;12(11):2427–33.

    PubMed  CAS  Google Scholar 

  25. 25.

    Hausberg M, Kosch M, Harmelink P, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–9.

    PubMed  Article  Google Scholar 

  26. 26.

    Klein IH, Ligtenberg G, Oey PL, et al. Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J Am Soc Nephrol. 2003;14(2):425–30.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Schlaich MP, Socratous F, Hennebry S, et al. Sympathetic activation in chronic renal failure. J Am Soc Nephrol: JASN. 2009;20(5):933–9.

    PubMed  Article  Google Scholar 

  28. 28.

    Symplicity HTNI, Esler MD, Krum H, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.

    Article  Google Scholar 

  29. 29.

    Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    PubMed  Article  Google Scholar 

  30. 30.

    Ott C, Schmid A, Ditting T, et al. Renal denervation in a hypertensive patient with end-stage renal disease and small arteries: a direction for future research. J Clin Hypertens. 2012;14(11):799–801.

    Article  Google Scholar 

  31. 31.

    Hering D, Mahfoud F, Walton AS, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23(7):1250–7.

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Shultz PJ. An emerging role for endothelin in renal disease. J Lab Clin Med. 1992;119(5):448–9.

    PubMed  CAS  Google Scholar 

  33. 33.

    Campese VM, Mitra N, Sandee D. Hypertension in renal parenchymal disease: why is it so resistant to treatment? Kidney Int. 2006;69(6):967–73.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Zoccali C. Endothelial dysfunction in CKD: a new player in town? Nephrol Dial Transplant. 2008;23(3):783–5.

    PubMed  Article  Google Scholar 

  35. 35.

    Weber MA, Black H, Bakris G, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9699):1423–31.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Zoccali C, Mallamaci F, Tripepi G. Sleep apnea in renal patients. J Am Soc Nephrol. 2001;12(12):2854–9.

    PubMed  CAS  Google Scholar 

  37. 37.

    Ficker JH, Dertinger SH, Siegfried W, et al. Obstructive sleep apnoea and diabetes mellitus: the role of cardiovascular autonomic neuropathy. Eur Resp J. 1998;11(1):14–9.

    CAS  Article  Google Scholar 

  38. 38.

    Logan AG, Perlikowski SM, Mente A, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens. 2001;19(12):2271–7.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Sim JJ, Rasgon SA, Derose SF. Sleep apnea and hypertension: prevalence in chronic kidney disease. J Clin Hypertens. 2007;9(11):837–41.

    Article  Google Scholar 

  40. 40.

    Phillips BG, Somers VK. Hypertension and obstructive sleep apnea. Curr Hypertens Rep. 2003;5(5):380–5.

    PubMed  Article  Google Scholar 

  41. 41.

    Yumino D, Redolfi S, Ruttanaumpawan P, et al. Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation. 2010;121(14):1598–605.

    PubMed  Article  Google Scholar 

  42. 42.

    Hanly PJ, Pierratos A. Improvement of sleep apnea in patients with chronic renal failure who undergo nocturnal hemodialysis. N Engl J Med. 2001;344(2):102–7.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Tang SC, Lam B, Ku PP, et al. Alleviation of sleep apnea in patients with chronic renal failure by nocturnal cycler-assisted peritoneal dialysis compared with conventional continuous ambulatory peritoneal dialysis. J Am Soc Nephrol. 2006;17(9):2607–16.

    PubMed  Article  Google Scholar 

  44. 44.

    Pressman MR, Benz RL, Schleifer CR, et al. Sleep disordered breathing in ESRD: acute beneficial effects of treatment with nasal continuous positive airway pressure. Kidney Int. 1993;43(5):1134–9.

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Hricik DE, Lautman J, Bartucci MR, et al. Variable effects of steroid withdrawal on blood pressure reduction in cyclosporine-treated renal transplant recipients. Transplantation. 1992;53(6):1232–5.

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Institute of Medicine (U.S.). Committee on Strategies to Reduce Sodium Intake., Henney JE, Taylor CL, et al. Strategies to reduce sodium intake in the United States. National Academies Press, Washington, DC; 2010.

  47. 47.

    Rabi DM, Daskalopoulou SS, Padwal RS, et al. The 2011 Canadian Hypertension Education Program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk, and therapy. Can J Cardiol. 2011;27(4):415–33 e1–2.

    Google Scholar 

  48. 48.

    Appel LJ, Espeland MA, Easter L, et al. Effects of reduced sodium intake on hypertension control in older individuals: results from the Trial of Nonpharmacologic Interventions in the Elderly (TONE). Arch Intern Med. 2001;161(5):685–93.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Boudville N, Ward S, Benaroia M, et al. Increased sodium intake correlates with greater use of antihypertensive agents by subjects with chronic kidney disease. Am J Hypertens. 2005;18(10):1300–5.

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Pimenta E, Gaddam KK, Oparil S, et al. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial. Hypertension. 2009;54(3):475–81.

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Van Hoogdalem P, Donker AJ, Leenen FH. Angiotensin II blockade before and after marked sodium depletion in patients with hypertension. Clin Sci Mol Med. 1978;54(1):75–83.

    PubMed  Google Scholar 

  52. 52.

    Heeg JE, de Jong PE, van der Hem GK, et al. Efficacy and variability of the antiproteinuric effect of ACE inhibition by lisinopril. Kidney Int. 1989;36(2):272–9.

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Carter BL. Dosing of antihypertensive medications in patients with renal insufficiency. J Clin Pharmacol. 1995;35(1):81–6.

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Kappel J, Calissi P. Nephrology: 3. Safe drug prescribing for patients with renal insufficiency. CMAJ. 2002;166(4):473–7.

    PubMed  Google Scholar 

  55. 55.

    Barreras A, Gurk-Turner C. Angiotensin II receptor blockers. Proc (Bayl Univ Med Cent). 2003;16(1):123–6.

    Google Scholar 

  56. 56.

    Portaluppi F, Montanari L, Massari M, et al. Loss of nocturnal decline of blood pressure in hypertension due to chronic renal failure. Am J Hypertens. 1991;4(1 Pt 1):20–6.

    PubMed  CAS  Google Scholar 

  57. 57.

    Minutolo R, Agarwal R, Borrelli S, et al. Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch Intern Med. 2011;171(12):1090–8.

    PubMed  Article  Google Scholar 

  58. 58.

    Pogue V, Rahman M, Lipkowitz M, et al. Disparate estimates of hypertension control from ambulatory and clinic blood pressure measurements in hypertensive kidney disease. Hypertension. 2009;53(1):20–7.

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Zannad F, Matzinger A, Larche J. Trough/peak ratios of once daily angiotensin converting enzyme inhibitors and calcium antagonists. Am J Hypertens. 1996;9(7):633–43.

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Hermida RC, Ayala DE, Mojon A, et al. Bedtime dosing of antihypertensive medications reduces cardiovascular risk in CKD. J Am Soc Nephrol. 2011;22(12):2313–21.

    PubMed  Article  Google Scholar 

  61. 61.

    Wolf G, Ritz E. Diabetic nephropathy in type 2 diabetes prevention and patient management. J Am Soc Nephrol: JASN. 2003;14(5):1396–405.

    PubMed  Article  Google Scholar 

  62. 62.

    Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36(3):646–61.

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Hermida RC, Ayala DE, Mojon A, et al. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010;27(8):1629–51.

    PubMed  Article  Google Scholar 

  64. 64.

    Hoshide S, Kario K, Hoshide Y, et al. Associations between nondipping of nocturnal blood pressure decrease and cardiovascular target organ damage in strictly selected community-dwelling normotensives. Am J Hypertens. 2003;16(6):434–8.

    PubMed  Article  Google Scholar 

  65. 65.

    Brater DC. Diuretic therapy. N Engl J Med. 1998;339(6):387–95.

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Hughes AD. How do thiazide and thiazide-like diuretics lower blood pressure. J Renin Angiotensin Aldosterone Syst. 2004;5(4):155–60.

    PubMed  CAS  Article  Google Scholar 

  67. 67.

    Acchiardo SR, Skoutakis VA. Clinical efficacy, safety, and pharmacokinetics of indapamide in renal impairment. Am Heart J. 1983;106(1 Pt 2):237–44.

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Holland OB, Gomez-Sanchez CE, Kuhnert LV, et al. Antihypertensive comparison of furosemide with hydrochlorothiazide for black patients. Arch Intern Med. 1979;139(9):1015–21.

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Ram CV, Garrett BN, Kaplan NM. Moderate sodium restriction and various diuretics in the treatment of hypertension. Arch Intern Med. 1981;141(8):1015–9.

    PubMed  CAS  Article  Google Scholar 

  70. 70.

    Bank N, Lief PD, Piczon O. Use of diuretics in treatment of hypertension secondary to renal disease. Arch Intern Med. 1978;138(10):1524–9.

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Kidney Disease Outcomes Quality I. K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis. 2004;43(5 Suppl 1):S1–290.

    Google Scholar 

  72. 72.

    Dargie HJ, Allison ME, Kennedy AC, et al. Efficacy of metolazone in patients with renal edema. Clin Nephrol. 1974;2(4):157–60.

    PubMed  CAS  Google Scholar 

  73. 73.

    Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359(23):2417–28.

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Ruggenenti P, Perna A, Loriga G, et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005;365(9463):939–46.

    PubMed  Article  Google Scholar 

  75. 75.

    Chapman N, Dobson J, Wilson S, et al. Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension. 2007;49(4):839–45.

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Heshka J, Ruzicka M, Hiremath S, et al. Spironolactone for difficult to control hypertension in chronic kidney disease: an analysis of safety and efficacy. J Am Soc Hypertens: JASH. 2010;4(6):295–301.

    PubMed  Article  Google Scholar 

  77. 77.

    Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 2006;70(12):2116–23.

    PubMed  CAS  Google Scholar 

  78. 78.

    Investigators O, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  Google Scholar 

  79. 79.

    Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Feldman RD, Campbell N, Larochelle P, et al. 1999 Canadian recommendations for the management of hypertension. Task Force for the Development of the 1999 Canadian Recommendations for the Management of Hypertension. CMAJ. 1999;161 Suppl 12:S1–17.

  81. 81.

    Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med. 1996;334(1):13–8.

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Jafar TH, Stark PC, Schmid CH, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139(4):244–52.

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Weiner DE, Tighiouart H, Amin MG, et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol: JASN. 2004;15(5):1307–15.

    PubMed  Article  Google Scholar 

  84. 84.

    Wright JT Jr, Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the trial. JAMA. 2002;288(19):2421–31.

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330(13):877–84.

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med. 1995;123(10):754–62.

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Appel LJ, Wright JT Jr, Greene T, et al. Intensive blood-pressure control in hypertensive chronic kidney disease. N Engl J Med. 2010;363(10):918–29.

    PubMed  CAS  Article  Google Scholar 

  88. 88.

    Upadhyay A, Earley A, Haynes SM, et al. Systematic review: blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann Intern Med. 2011;154(8):541–8.

    PubMed  Article  Google Scholar 

  89. 89.

    Daskalopoulou SS, Khan NA, Quinn RR, et al. The 2012 Canadian hypertension education program recommendations for the management of hypertension: blood pressure measurement, diagnosis, assessment of risk, and therapy. Can J Cardiol. 2012;28(3):270–87.

    PubMed  Article  Google Scholar 

  90. 90.

    Officers A. Coordinators for the ACRGTA, Lipid-Lowering Treatment to Prevent Heart Attack T. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981–97.

    Article  Google Scholar 

  91. 91.

    Ruggenenti P, Remuzzi G, Tognoni G, et al., for the GISEN Group. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349(9069):1857–63.

    Google Scholar 

  92. 92.

    Turner R, Holman R, Stratton I, et al., for the UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317(7160):703–13.

  93. 93.

    Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet. 1998;351(9118):1755–62.

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Ruilope LM, Salvetti A, Jamerson K, et al. Renal function and intensive lowering of blood pressure in hypertensive participants of the hypertension optimal treatment (HOT) study. J Am Soc Nephrol. 2001;12(2):218–25.

    PubMed  CAS  Google Scholar 

  95. 95.

    Schrier RW, Estacio RO, Esler A, et al. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 2002;61(3):1086–97.

    PubMed  Article  Google Scholar 

  96. 96.

    Group AS, Cushman WC, Evans GW, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.

    Article  CAS  Google Scholar 

  97. 97.

    Fox KM. Investigators EUtOrocewPiscAd. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362(9386):782–8.

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Berl T, Hunsicker LG, Lewis JB, et al. Impact of achieved blood pressure on cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial. J Am Soc Nephrol. 2005;16(7):2170–9.

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Pohl MA, Blumenthal S, Cordonnier DJ, et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: clinical implications and limitations. J Am Soc Nephrol. 2005;16(10):3027–37.

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Coomer RW, Schulman G, Breyer JA, et al. Ambulatory blood pressure monitoring in dialysis patients and estimation of mean interdialytic blood pressure. Am J Kidney Dis. 1997;29(5):678–84.

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Alborzi P, Patel N, Agarwal R. Home blood pressures are of greater prognostic value than hemodialysis unit recordings. Clin J Am Soc Nephrol. 2007;2(6):1228–34.

    PubMed  Article  Google Scholar 

  104. 104.

    Zager PG, Nikolic J, Brown RH, et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Medical Directors of Dialysis Clinic, Inc. Kidney Int. 1998;54(2):561–9.

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Jindal K, Chan CT, Deziel C, et al. Hemodialysis clinical practice guidelines for the Canadian Society of Nephrology. J Am Soc Nephrol. 2006;17(3 Suppl 1):S1–27.

    PubMed  Google Scholar 

  106. 106.

    Locatelli F, Covic A, Chazot C, et al. Hypertension and cardiovascular risk assessment in dialysis patients. Nephrol Dial Transplant. 2004;19(5):1058–68.

    PubMed  Article  Google Scholar 

  107. 107.

    Tentori F, Hunt WC, Rohrscheib M, et al. Which targets in clinical practice guidelines are associated with improved survival in a large dialysis organization? J Am Soc Nephrol. 2007;18(8):2377–84.

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Cannella G, Paoletti E, Delfino R, et al. Prolonged therapy with ACE inhibitors induces a regression of left ventricular hypertrophy of dialyzed uremic patients independently from hypotensive effects. Am J Kidney Dis. 1997;30(5):659–64.

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Zannad F, Kessler M, Lehert P, et al. Prevention of cardiovascular events in end-stage renal disease: results of a randomized trial of fosinopril and implications for future studies. Kidney Int. 2006;70(7):1318–24.

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Hemodialysis Adequacy Work G. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis. 2006;48 Suppl 1:S2–90.

    Google Scholar 

  111. 111.

    Cice G, Ferrara L, D’Andrea A, et al. Carvedilol increases two-year survivalin dialysis patients with dilated cardiomyopathy: a prospective, placebo-controlled trial. J Am Coll Cardiol. 2003;41(9):1438–44.

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98.

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

None of the authors have any relevant conflicts of interest to report.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brendan B. McCormick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Talreja, H., Ruzicka, M. & McCormick, B.B. Pharmacologic Treatment of Hypertension in Patients With Chronic Kidney Disease. Am J Cardiovasc Drugs 13, 177–188 (2013). https://doi.org/10.1007/s40256-013-0009-4

Download citation

Keywords

  • Chronic Kidney Disease
  • Aliskiren
  • Resistant Hypertension
  • Advanced Chronic Kidney Disease
  • Central Sympathetic Outflow