Skip to main content
Log in

Hollow Multishelled Structure Reviving Lithium Metal Anode for High-energy-density Batteries

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Due to its highest theoretical capacity and its lowest redox potential, lithium (Li) metal has been considered as the ultimate anode choice for high-energy-density rechargeable batteries. However, its commercialization is severely hindered by its poor cyclic stability and safety issues. Diverse material structure design concepts have been raised to address these failure models, wherein, hollow structure has shown great power in solving the challenges. Especially, a hollow multishelled structure (HoMS) featured with two or more shells has been proved to be more efficient to improve Li metal anode than their single-shelled counterparts. Herein, this up-to-date review summarizes the recent progress of the application of HoMS in Li metal anode, including their adoption as Li metal host, artificial solid electrolyte interphase film, electrolyte additive, solid state electrolyte, etc. HoMS offers unique advantages, such as suppressing Li dendrite growth, stabilizing electrode-electrolyte interface, and improving overall battery performance. Future research directions are outlined, emphasizing the need for multifunctional integrated smart HoMS design and large-scale fabrication of HoMS through low-cost accurate method to further advance the commercialization of Li metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev., 2017, 117, 10403.

    Article  CAS  PubMed  Google Scholar 

  2. Xie J., Yao X., Cheng Q., Madden L. P., Dornath P., Chan C.-C., Fan W., Wang D., Angew. Chem. Int. Ed., 2015, 54, 4299.

    Article  CAS  Google Scholar 

  3. Xie J., Liao L., Gong Y., Li Y., Shi F., Pei A., Sun J., Zhang R., Kong B., Subbaraman R., Christensen J., Cui Y., Sci. Adv., 2017, 3, eaao3170.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhu Y., Xie J., Pei A., Liu B., Wu Y., Lin D., Li J., Wang H., Chen H., Xu J., Yang A., Wu C.-L, Wang H., Chen W., Cui Y., Nat. Commun., 2019, 10, 2067.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin D., Liu Y., Cui Y., Nat. Nanotechnol., 2017, 12, 194.

    Article  CAS  PubMed  Google Scholar 

  6. Liu K., Zhuo D., Lee H. W., Liu W., Lin D., Lu Y., Cui Y., Adv. Mater., 2017, 29, 1603987.

    Article  Google Scholar 

  7. Jiang Y., Jiang J., Wang Z., Han M., Liu X., Yi J., Zhao B., Sun X., Zhang J., Nano Energy, 2020, 70, 104504.

    Article  CAS  Google Scholar 

  8. Liu K., Kong B., Liu W., Sun Y., Song M. S., Chen J., Cui Y., Joule, 2018, 2, 1857

    Article  CAS  Google Scholar 

  9. Ye W., Pei F., Lan X., Cheng Y., Fang X., Zhang Q., Zheng N., Peng D. L., Wang M. S., Adv. Energy Mater., 2020, 10, 1902956.

    Article  CAS  Google Scholar 

  10. Zhang W., Wang J., Zhang H., Dong Q., Zhang S., Sun B., Chen Z., Guo H., Han X., Deng Y., Hu W., Small Struct., 2023, 5, 2300358.

    Article  Google Scholar 

  11. Wang J., Cui Y., Wang D., Adv. Mater., 2019, 31, e1801993.

    Article  PubMed  Google Scholar 

  12. Wang J., Cui Y., Wang D., Nanoscale Horiz., 2020, 5, 1287.

    Article  CAS  PubMed  Google Scholar 

  13. Wang J., Wan J., Yang N., Li Q., Wang D., Nat. Rev. Chem., 2020, 4, 159.

    Article  CAS  PubMed  Google Scholar 

  14. Wang J., Wan J., Wang D., Acc. Chem. Res., 2019, 52, 2169.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J., Wang Z., Mao D., Wang D., Sci. China Chem., 2021, 65, 7.

    Article  Google Scholar 

  16. Lai X., Li J., Korgel B. A., Dong Z., Li Z., Su F., Du J., Wang D., Angew. Chem. Int. Ed., 2011, 50, 2738.

    Article  CAS  Google Scholar 

  17. Wei Y., Cheng Y., Zhao D., Feng Y., Wei P., Wang J., Ge W., Wang D., Angew. Chem. Int. Ed., 2023, 62, e202302621.

    Article  CAS  Google Scholar 

  18. Mao D., Wan J., Wang J., Wang D., Adv. Mater., 2019, 31, e1802874.

    Article  PubMed  Google Scholar 

  19. Lai X. Y., Halpert J. E., Wang D., Energy Environ. Sci., 2012, 5, 5604.

    Article  CAS  Google Scholar 

  20. Wang J., Yang N., Tang H., Dong Z., Jin Q., Yang M., Kisailus D., Zhao H., Tang Z., Wang D., Angew. Chem. Int. Ed., 2013, 52, 6417.

    Article  CAS  Google Scholar 

  21. Li B., Wang J., Bi R., Yang N., Wan J., Jiang H., Gu L., Du J., Cao A., Gao W., Wang D., Adv. Mater., 2022, 34, 2200206.

    Article  CAS  Google Scholar 

  22. Wang J., Tang H., Zhang L., Ren H., Yu R., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P., Zhang Y., Wen Y., Gu L., Ma G., Su Z., Tang Z., Zhao H., Wang D., Nat. Energy, 2016, 1, 16050.

    Article  CAS  Google Scholar 

  23. Zhang X., Bi R., Wang J., Zheng M., Wang J., Yu R., Wang D., Adv. Mater., 2023, 35, e2209354.

    Article  PubMed  Google Scholar 

  24. Zhao J., Wang J., Bi R., Yang M., Wan J., Jiang H., Gu L., Wang D., Angew. Chem. Int. Ed., 2021, 60, 25719.

    Article  CAS  Google Scholar 

  25. Zhao X., Yang M., Wang J., Wang D., Chem. Res. Chinese Universities, 2023, 39, 630.

    Article  CAS  Google Scholar 

  26. Salhabi E. H. M., Zhao J., Wang J., Yang M., Wang B., Wang D., Angew. Chem. Int. Ed., 2019, 58, 9078.

    Article  CAS  Google Scholar 

  27. Xu W., Bi R., Yang M., Wang J., Yu R., Wang D., Nano Res., 2023, 16, 12745.

    Article  CAS  Google Scholar 

  28. Xu W., Bi R., Yang M., W., J Yu R., Wang D., Chin. Sci. Bull., 2023, DOI: https://doi.org/10.1360/TB-2023-1006

  29. Wei Y., Wan J., Yang N., Yang Y. Ma Y., Wang S., Wang J., Yu R., Gu L., Wang L., Wang L., Huang W., Wang D., Natl. Sci. Rev., 2020, 7, 1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao D., Yang N., Wei Y., Jin Q., Wang Y., He H., Yang Y., Han B., Zhang S., Wang D., Nat. Commun., 2020, 11, 4450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen X., Yang N., Wang Y., He H., Wang J., Wan J., Jiang H., Xu B. Wan L. G., Yu R., Tong L., Gu L., Xiong Q., Chen C., Zhang S., Wang D., Adv. Mater., 2022, 34, 2107400.

    Article  CAS  Google Scholar 

  32. Wei Y., You F., Zhao D., Wan J., Gu L., Wang D., Angew. Chem. Int. Ed., 2022, 61, e202212049.

    Article  CAS  Google Scholar 

  33. Han W., Wang Y., Wan J., Wang D., Chem. Res. Chinese Universities, 2022, 38, 117.

    Article  CAS  Google Scholar 

  34. Wang L., Wan J., Wang J., Wang D., Small Struct., 2021, 2, 2000041.

    Article  CAS  Google Scholar 

  35. Lee J., Jeong S. H., Nam J. S., Sagong M., Ahn J., Lim H., Kim I. D., EcoMat, 2023, 5, e12476.

    Google Scholar 

  36. Wang H., Yu Z., Kong X., Kim S. C., Boyle D. T., Qin J., Bao Z., Cui Y., Joule, 2022, 6, 588.

    Article  CAS  Google Scholar 

  37. Zheng Z.-J., Su Q., Zhang Q., Hu X.-C., Yin Y.-X., Wen R., Ye H., Wang Z.-B., Guo Y.-G., Nano Energy, 2019, 64, 103910.

    Article  CAS  Google Scholar 

  38. Yan K., Lu Z., Lee H.-W., Xiong F., Hsu P.-C., Li Y., Zhao J., Chu S., Cui Y., Nat. Energy, 2016, 1, 16010.

    Article  CAS  Google Scholar 

  39. Wu Z., Li Z., Chou S., Liang X., Chem. Res. Chinese Universities, 2022, 39, 283.

    Article  Google Scholar 

  40. Xie J., Wang J., Lee H. R., Yan K., Li Y., Shi F., Huang W., Pei A., Chen G., Subbaraman R., Christensen J., Cui Y., Sci. Adv., 2018, 4, eaat5168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xue P., Sun C., Li H., Liang J., Lai C., Adv. Sci., 2019, 6, 1900943.

    Article  CAS  Google Scholar 

  42. Chen T., Qin B., Liu Y., Jin Z., Wu H., Wang C., Zhang X., CCS Chem., 2024, DOI: https://doi.org/10.31635/ccschem.023.202303380.

  43. Zheng G., Lee S. W., Liang Z., Lee H. W., Yan K., Yao H., Wang H., Li W., Chu S., Cui Y., Nat. Nanotechnol, 2014, 9, 618.

    Article  CAS  PubMed  Google Scholar 

  44. Ren F., Li Z., Zhu Y., Huguet P., Deabate S., Wang D., Peng Z., Nano Energy, 2020, 73, 104746.

    Article  CAS  Google Scholar 

  45. Yuan H., Nai J., Fang Y., Lu G., Tao X., Lou X. W. D., Angew. Chem. Int. Ed., 2020, 59, 15839.

    Article  CAS  Google Scholar 

  46. Tan Y. H., Lu G. X., Zheng J. H., Zhou F., Chen M., Ma T., Lu L. L., Song Y. H., Guan Y., Wang J., Liang Z., Xu W. S., Zhang Y., Tao X., Yao H. B., Adv. Mater., 2021, 33, 2102134.

    Article  CAS  Google Scholar 

  47. Yang F., Liu Y., Liu T., Wang Y., Nai J., Lin Z., Xu H., Duan D., Yue K., Tao X., Small Struct., 2022, 4, 2200122.

    Article  Google Scholar 

  48. Yang G., Hou W., Zhai Y., Chen Z., Liu C., Ouyang C., Liang X., Paoprasert P., Hu N., Song S., EcoMat, 2023, 5, e12325.

    Article  CAS  Google Scholar 

  49. Zhou D., Liu R., He Y. B., Li F., Liu M., Li B., Yang Q. H., Cai Q., Kang F., Adv. Energy Mater., 2016, 6, 1502214.

    Article  Google Scholar 

  50. Wei P., Wang H., Yang M., Wang J., Wang D., Adv. Energy Mater., 2024, DOI: https://doi.org/10.1002/aenm.202400108.

  51. Ma Y., Bi R., Yang M., Wei P., Qi J., Wang J., Yu R., Wang D., J. Nanopart. Res., 2023, 25, 14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52301296, 52261160573, 52072369), the National Key R&D Program of China (Nos. 2022YFA1504101, 2021YFC2902503), the Zhongke-Yuneng Joint R&D Center Program, China (No. ZKYN2022008), and the Institute of Process Engineering (IPE) Project for Frontier Basic Research, China (No. QYJC-2022-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangyan Wang or Dan Wang.

Ethics declarations

WANG Dan is an editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. WANG Jiangyan is a youth executive editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wei, P., Wang, J. et al. Hollow Multishelled Structure Reviving Lithium Metal Anode for High-energy-density Batteries. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4062-0

Keywords

Navigation