Skip to main content
Log in

Highly Selective CO2 Separation on Na-exchanged DNL-6 Synthesized by Utilization of Spent Industrial Catalyst

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Conversion of industrial solid wastes into functional materials has attracted considerable interest, as it can reduce environmental pollution and facilitate the sustainable development of relevant processes. Herein, spent methanol-to-olefins (MTO) industrial catalyst was explored for the synthesis of DNL-6 molecular sieve, a promising SAPO-type adsorbent for CO2 capture. It was demonstrated that DNL-6 with high purity and crystallinity, and various silica contents can be readily synthesized. Na-exchanged DNL-6 was further prepared using the as-synthesized DNL-6 as the precursor, and its structure was investigated by Rietveld refinement, revealing that Na cations were mainly located in the single 8-rings (S8Rs). Na-DNL-6 with varied silica contents and Na contents were investigated for adsorption studies. Na-DNL-6 with a high Na exchange degree exhibited comparable CO2 uptake with H-DNL-6 (298 K and 101 kPa), but superior separation selectivity for CO2/CH4 (as high as 1369, 50/50 kPa) and CO2/N2 (∞, 15/85 kPa) owing to the “trapdoor” effect associated with the Na cations sited in the S8Rs. This work provides an eco-friendly approach for the synthesis of efficient silicoaluminophosphate adsorbent for CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilfillan D., Marland G., Earth Syst. Sci. Data, 2020, 2020, 1.

    Google Scholar 

  2. Liu R. S., Xu S., Hao G. P., Lu A. H., Chem. Res. Chinese Universities, 2022, 38, 18.

    Article  CAS  Google Scholar 

  3. Zhang P., Zhang C., Wang L., Dong J., Gai D., Wang W., Nguyen T. S., Yavuz C. T., Zou X., Zhu G., Adv. Funct. Mater., 2023, 33, 2210091.

    Article  CAS  Google Scholar 

  4. Sahoo R., Mondal S., Mukherjee D., Das M. C., Adv. Funct. Mater., 2022, 32, 2207197.

    Article  CAS  Google Scholar 

  5. Wang X., Yan N., Xie M., Liu P., Bai P., Su H., Wang B., Wang Y., Li L., Cheng T., Chem. Sci., 2021, 12, 8803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agrawal M., Sholl D. S., ACS Appl. Mater. Interfaces, 2019, 11, 31060.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y., Zhang J., Wang L., Cui X., Liu X., Wong S. S., An H., Yan N., Xie J., Yu C., Science, 2021, 373, 315.

    Article  CAS  PubMed  Google Scholar 

  8. Liang J., Nuhnen A., Millan S., Breitzke H., Gvilava V., Buntkowsky G., Janiak C., Angew. Chem. Int. Ed., 2020, 59, 6068.

    Article  CAS  Google Scholar 

  9. Altundal O. F., Altintas C., Keskin S., J. Mater. Chem., 2020, 8, 14609.

    Article  CAS  Google Scholar 

  10. Liu Y., Wang S., Meng X., Ye Y., Song X., Liang Z., Zhao Y., Angew. Chem. Int. Ed., 2020, 59, 19487.

    Article  CAS  Google Scholar 

  11. Shang J., Li G., Singh R., Gu Q., Nairn K. M., Bastow T. J., Medhekar N., Doherty C. M., Hill A. J., Liu J. Z., J. Am. Chem. Soc., 2012, 134, 19246.

    Article  CAS  PubMed  Google Scholar 

  12. F. Duan, X. Liu, D. Qu, B. Li, L. Wu., CCS Chemistry, 2021, 3, 2676.

    Article  CAS  Google Scholar 

  13. Zhang X., Wang Z., Chen Z., Zhu Y., Liu Z., Li F., Zhou W., Dong Z., Fan J., Liu L., Appl. Catal. B: Environ., 2022, 317, 121771.

    Article  CAS  Google Scholar 

  14. Choi H. J., Jo D., Min J. G., Hong S. B., Angew. Chem. Int. Ed., 2021, 60, 4307.

    Article  CAS  Google Scholar 

  15. Zhao J., Mousavi S. H., Xiao G., Mokarizadeh A. H., Moore T., Chen K., Gu Q., Singh R., Zavabeti A., Liu J. Z., J. Am. Chem. Soc., 2021, 143, 15195.

    Article  CAS  PubMed  Google Scholar 

  16. Balestra S. R., Hamad S., Ruiz-Salvador A. R., Domínguez-García V., Merkling P. J., Dubbeldam D., Calero S., Chem. Mat., 2015, 27, 5657.

    Article  CAS  Google Scholar 

  17. Georgieva V. M., Bruce E. L., Verbraeken M. C., Scott A. R., Casteel Jr W. J., Brandani S., Wright P. A., J. Am. Chem. Soc., 2019, 141, 12744.

    Article  CAS  PubMed  Google Scholar 

  18. Su X., Tian P., Li J., Zhang Y., Meng S., He Y., Fan D., Liu Z., Microporous Mesoporous Mat., 2011, 144, 113.

    Article  CAS  Google Scholar 

  19. Yang M., Tian P., Liu L., Wang C., Xu S., He Y., Liu Z., CrystEngComm., 2015, 17, 8555.

    Article  CAS  Google Scholar 

  20. Liu Z., Wang Q., Liu S., Yang M., Fan D., Zhu D., Tian P., Mater. Today Sustain., 2023, 21, 100302.

    Article  Google Scholar 

  21. Huang Y., Machado D., Kirby C. W., J. Phys. Chem. B, 2004, 108, 1855.

    Article  CAS  Google Scholar 

  22. Blackwell C., Patton R., J. Phys. Chem., 1988, 92, 3965.

    Article  CAS  Google Scholar 

  23. Tan J., Liu Z., Bao X., Liu X., Han X., He C., Zhai R., Microporous Mesoporous Mat., 2002, 53, 97.

    Article  CAS  Google Scholar 

  24. Rodríguez-González L., Hermes F., Bertmer M., Rodríguez-Castellón E., Jiménez-López A., Simon U., Appl. Catal. A: Gen., 2007, 328, 174.

    Article  Google Scholar 

  25. Xiang X., Yang M., Gao B., Qiao Y., Tian P., Xu S., Liu Z., RSC Adv., 2016, 6, 12544.

    Article  CAS  Google Scholar 

  26. Lozinska M. M., Mangano E., Mowat J. P., Shepherd A. M., Howe R. F., Thompson S. P., Parker J. E., Brandani S., Wright P. A., J. Am. Chem. Soc., 2012, 134, 17628.

    Article  CAS  PubMed  Google Scholar 

  27. Lozinska M. M., Mowat J. P., Wright P. A., Thompson S. P., Jorda J. L., Palomino M., Valencia S., Rey F., Chem. Mat., 2014, 26, 2052.

    Article  CAS  Google Scholar 

  28. Harlick P. J., Tezel F. H., Microporous Mesoporous Mat., 2004, 76, 71.

    Article  CAS  Google Scholar 

  29. Deroche I., Gaberova L., Maurin G., Castro M., Wright P., Llewellyn P., J. Phys. Chem., 2008, 112, 5048.

    CAS  Google Scholar 

  30. Li Y., Chen H., Wang C., Ye Y., Li L., Song X., Yu J., Chem. Sci., 2022, 13, 5687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang D., Tian P., Yang M., Xu S., Fan D., Su X., Yang Y., Wang C., Liu Z., Microporous Mesoporous Mat., 2014, 194, 8.

    Article  CAS  Google Scholar 

  32. Reisner B. A., Lee Y., Hanson J. C., Jones G. A., Parise J. B., Corbin D. R., Toby B. H., Freitag A., Larese J. Z., Kahlenberg V., Chem. Commun., 2000, 22, 2221.

    Article  Google Scholar 

  33. Ke Q., Sun T., Wei X., Guo Y., Xu S., Wang S., Chem. Eng. J., 2019, 359, 344.

    Article  CAS  Google Scholar 

  34. Bower J. K., Barpaga D., Prodinger S., Krishna R., Schaef H. T., McGrail B. P., Derewinski M. A., Motkuri R. K., ACS Appl. Mater, 2018, 10, 14287.

    Article  CAS  Google Scholar 

  35. Wang S., Bai P., Sun M., Liu W., Li D., Wu W., Yan W., Shang J., Yu J., Adv. Sci., 2019, 6, 1901317.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21991090, 21991091, 22171259, 22272173) and the AI S&T Program of Yulin Branch, Dalian National Laboratory for Clean Energy, CAS (No. DNL-YL A202206).

The authors thank to the funding from the Sino-French IRN (International Research Network).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Tian or Zhongmin Liu.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Wang, Q., Yan, N. et al. Highly Selective CO2 Separation on Na-exchanged DNL-6 Synthesized by Utilization of Spent Industrial Catalyst. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4056-y

Keywords

Navigation