Skip to main content
Log in

Precise Fabrication of Tetrametallic Metal-Organic Frameworks and Multivariate Hybrids for Enhanced Photothermal Tandem Catalysis

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Multiple metal sites doped in metal-organic frameworks (MOFs) are essential for their promising application in cascade reactions. However, precision synthesis of tetrametallic MOFs with total coordination and regular shapes is challenging due to the different coordination abilities of four metal ions. Herein, a series of tetrametallic MOFs (t-MOFs) with four regular morphologies is successfully constructed by regulating the metal ratio, amount of morphologic modulating reagent or growth time. The t-MOFs can be flexibly oxidized to afford porous metal oxides (MxCo3O4, M=CuZnNi) under air or reduced to carbon-encapsulated CuCoNi under H2/Ar for different reactions to maximize the value-in-use of MOFs. In particular, the t-MOF@MxCo3O4 obtained upon the surface oxidation of t-MOF well integrates the Lewis-base sites from MOF core with photothermal oxidation activity from MxCo3O4 shell. The hybrid effectively catalyzes the cascade reaction of styrene oxidation coupling Knoevenagel condensation under visible light. Thus, the by-product, benzaldehyde, is successfully converted to easily separated benzylidene malononitrile to finally obtain pure styrene epoxide (SO). In MxCo3O4, Ni species afford good photothermal effect, Cu and Co species provide catalytic activity, and Zn species increase SO selectivity. The host-object coordination and the synergy among objects may greatly boost more complex reactions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moon H. R., Lim D. W., Suh M. P., Chem. Soc. Rev., 2013, 42, 1807.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou H., Kitagawab S., Chem. Soc. Rev., 2014, 43, 5415.

    Article  CAS  PubMed  Google Scholar 

  3. Ji Z., Li T., Yaghi O. M., Science., 2020, 369, 674.

    Article  CAS  PubMed  Google Scholar 

  4. Islamoglu T., Goswami S., Li Z., Howart, A. J., Farha O. K., Hupp J. T., Acc. Chem. Res., 2017, 50, 805.

    Article  CAS  PubMed  Google Scholar 

  5. Daglar H., Gulbalkan H. C., Avci G., Aksu G. O., Altundal O. F., Altintas C., Erucar I., Keskin S., Angew. Chem. Int. Ed., 2021, 60, 7828.

    Article  CAS  Google Scholar 

  6. Lin R. B., Li L., Zhou H. L., Wu H., He C., Li S., K R., Li J., Zhou W., Chen B., Nat. Mater., 2018, 17, 1128.

    Article  CAS  PubMed  Google Scholar 

  7. Kim E., Siegelman R., Jiang H., Forse A., Lee J., Martell J., Milner P., Falkowski J., Neaton J., Reimer J., Weston S., Long J., Science., 2020, 369, 392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee J., Farha O. K., Roberts J. K., Scheidt A., Nguyen S. T., Hupp J. T., Chemical Society Reviews., 2009, 38, 1450.

    Article  CAS  PubMed  Google Scholar 

  9. Yang Q. H., Xu Q., Jiang H. L., Chem. Soc. Rev., 2017, 46, 4774.

    Article  CAS  PubMed  Google Scholar 

  10. Wen Y., Rentería-Gómez Á., Day G., Smith M., Yan T., Ozdemir R., Gutierrez O., Sharma V., Ma X., Zhou H., J. Am. Chem. Soc., 2022, 144, 11840.

    Article  CAS  PubMed  Google Scholar 

  11. Jiao L., Jiang H. L., Chin. J. Catal., 2023, 45, 1.

    Article  CAS  Google Scholar 

  12. Li F. Y., Du M., Xiao X., Xu Q., ACS Nano., 2022, 16, 19913.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang H., Liu B., Lan Y., Kuratani K., Akita T., Shioyama H., Zong F., Xu Q., J. Am. Chem. Soc., 2011, 133, 11854.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao S., Song X., Song S., Zhang H., Coord. Chem. Rev., 2017, 337, 80.

    Article  CAS  Google Scholar 

  15. Yin P., Yao T., Wu Y., Zheng L., Lin Y., Liu W., Ju H., Zhu J., Hong X., Deng Z., Zhou G., Wei S., Li Y., Angew. Chem. Int. Ed., 2016, 55, 10800.

    Article  CAS  Google Scholar 

  16. Li S., Gao Y., Li N., Ge L., Bu X., Feng P., Energy Environ. Sci., 2021, 14, 1897.

    Article  CAS  Google Scholar 

  17. Ren F. D., Gao Q. Q., Chen Y. Z., Chem. Res. Chinese Universities, 2022, 38, 1361.

    Article  CAS  Google Scholar 

  18. Jiang H., Liu B., Lan Y., Kuratani K., Akita T., Shioyama H., Zong F., Xu Q., J. Am. Chem. Soc., 2011, 133, 11854.

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y. Z., Zhang R., Jiao L., Jiang H. L., Coord. Chem. Rev., 2018, 362, 1.

    Article  CAS  Google Scholar 

  20. Hu L. Y., Li W. R., Wang L., Wang B., EnergyChem., 2021, 3, 100056.

    Article  CAS  Google Scholar 

  21. Liang J., Wu Q., Huang Y. B., Cao R., EnergyChem., 2021, 3, 100064.

    Article  CAS  Google Scholar 

  22. Wang W. J., Chen D., Li F. Y., Xiao X., Xu Q., Chem., 2024, 10, 86.

    Article  Google Scholar 

  23. Ding Y., Wang C. H., Zheng R. T., Maitra S., Zhang G. W., Barakat T., Roy S., Su B. L., Chen L. H., EnergyChem., 2022, 4, 100081.

    Article  CAS  Google Scholar 

  24. Wu H., Lou X., Sci. Adv., 2017, 3, eaap9252.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu Y., Zeng X., Wang W., Cao D., Adv. Funct. Mater., 2018, 28, 1704537.

    Article  Google Scholar 

  26. Cao X., Tan C., Sindoro M., Zhang H., Chemical Society Reviews., 2017, 46, 2660.

    Article  CAS  PubMed  Google Scholar 

  27. Abednata S., Gohari D. P., Depauw H., Coudert F.-X., Vrielinck H., Voort P. V. D., Leus K., Chemical Society Reviews., 2019, 48, 2535.

    Article  Google Scholar 

  28. Huang Z., Song J., Li K., Tahir M., Wang Y., Pan L., Wang L., Zhang X., Zou J., J. Am. Chem. Soc., 2016, 138, 1359.

    Article  CAS  PubMed  Google Scholar 

  29. Ding M., Chen J., Jiang M., Zhang X., Wang G., J. Mater. Chem. A., 2019, 7, 14163.

    Article  CAS  Google Scholar 

  30. Li F. L., Shao Q., Huang X., Lang J. P., Angew. Chem. Int. Ed., 2017, 57, 1888.

    Article  Google Scholar 

  31. Taherinia D., Hatami H., Mirzaee V. F., Journal of Electroanalytical Chemistry., 2022, 922, 116720.

    Article  CAS  Google Scholar 

  32. Zhang M., Xu W., Li T., Zhu H., Zheng Y., Inorganic Chemistry., 2020, 59, 15467.

    Article  CAS  PubMed  Google Scholar 

  33. Castillo-Blas C., LóPez-Salas N., Gutiérrez M. C., Puente-Orench I., Gutiérrez-Puebla E., Luisa Ferrer M., Ángeles Monge M., Gándara F., J. Am. Chem. Soc., 2019, 141, 1766.

    Article  CAS  PubMed  Google Scholar 

  34. Yang F., Mu H., Wang C., Xiang L., Yao K., Liu L., Yang Y., Han Y., Li Y., Pan Y., Chem. Mater., 2018, 30, 3467.

    Article  CAS  Google Scholar 

  35. Park K. S., Ni Z., Côté A. P., Choi J. Y., Huang R. D., Uribe-Romo F. J., Chae H. K., O’Keeffe M., Yaghi O. M., Proc. Natl. Acad. Sci. USA., 2006, 103, 10186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao C., Lin Y., Zhang J., Chen X., Angew. Chem. Int. Ed., 2006, 45, 1557.

    Article  Google Scholar 

  37. Chizallet C., Lazare S., Bazer-Bachi D., Bonnier F., Lecocq V., Soyer E., Quoineaud A. A., Bats N., J. Am. Chem. Soc., 2010, 132, 12365.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang F., Wei Y., Wu T., Jiang Y., Wang W., Li X., J. Am. Chem. Soc., 2014, 136, 13963.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y. Z., Wang C., Wu Z.-Y., Xiong Y., Xu Q., Yu S. H., Jiang H. L., Advanced Materials., 2015, 27, 5010.

    Article  CAS  PubMed  Google Scholar 

  40. Li Y., Jia B., Fan Y., Zhu K., Li G., Su C. Y., Advanced Energy Materials., 2018, 8, 1702048.

    Article  Google Scholar 

  41. Ning H., Li G., Chen Y., Zhang K., Gong Z., Nie R., Hu W., Xia Q., ACS Applied Materials & Interfaces., 2019, 11, 1957.

    Article  CAS  Google Scholar 

  42. Su P., Xiao H., Zhao J., Yao Y., Shao Z., Li C., Yang Q., Chemical Science., 2013, 4, 2941.

    Article  CAS  Google Scholar 

  43. Ni B., Ouyang C., Xu X., Zhuang J., Wang X., Advanced Materials., 2017, 29, 1701354.

    Article  Google Scholar 

  44. Ueberbacher B. T., Hall M., Faber K., Nat. Prod. Rep., 2012, 29, 337.

    Article  CAS  PubMed  Google Scholar 

  45. Carlson J. C., Li S., Gunatilleke S. S., Anzai Y., Burr D. A., Podust L. M., Sherman D. H., Nat. Chem., 2011, 3, 628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nicolaou K. C., Chen J. S., Chem. Soc. Rev., 2009, 38, 2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao C., Lercher J. A., Angew. Chem. Int. Ed., 2012, 51, 5935.

    Article  CAS  Google Scholar 

  48. Tian S., Wang B., Gong W., He Z., Xu Q., Chen W., Zhang Q., Zhu Y., Yang J., Fu Q., Chen C., Bu Y., Gu L., Sun X., Zhao H., Wang D., Li Y., Nat. Commun., 2021, 12, 1.

    Article  Google Scholar 

  49. Xiong M., Gao Z., Zhao P., Wang G., Yan W., Xing S., Wang P., Ma J., Jiang Z., Liu X., Ma J., Xu J., Qin Y., Nat Commun., 2020, 11, 11.

    Article  Google Scholar 

  50. Fu Y., Xu L., Shen H., Yang H., Zhang F., Zhu W., Fan M., Chem. Eur. J., 2016, 299, 135.

    CAS  Google Scholar 

  51. Yao J., He M., Wang H., CrystEngComm., 2015, 17, 4970.

    Article  CAS  Google Scholar 

  52. Tran U. P. N., Le K. K. A., Phan N. T. S., ACS Catal., 2011, 1, 120.

    Article  CAS  Google Scholar 

  53. Karagiaridi O., Lalonde M. B., Bury W., Sarjeant A. A., Farha O. K., Hupp J. T., J. Am. Chem. Soc., 2012, 134, 18790.

    Article  CAS  PubMed  Google Scholar 

  54. Yang S. J., Park C. R., Adv. Mater., 2012, 24, 4010.

    Article  CAS  PubMed  Google Scholar 

  55. Sun J. L., Ren F. D., Chen Y. Z., Li, Z. B., Nanoscale., 2023, 15, 15415.

    Article  CAS  PubMed  Google Scholar 

  56. Harraz F. A., El-Hout S. E., Killa H. M., Ibrahim I. A., Journal of Catalysis., 2012, 286, 184.

    Article  CAS  Google Scholar 

  57. Patel A. U., Patel J. R., Molecular Catalysis., 2021, 513, 111827.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Excellent Youth Foundation of Natural Science Foundation of Shandong Province, China (No. ZR2020YQ08) and the National Natural Science Foundation of China (No. 22275108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhen Chen or Zhibo Li.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2024_4044_MOESM1_ESM.pdf

Precise Fabrication of Tetrametallic Metal-Organic Frameworks and Multivariate Hybrids for Enhanced Photothermal Tandem Catalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, Y., Wang, H. et al. Precise Fabrication of Tetrametallic Metal-Organic Frameworks and Multivariate Hybrids for Enhanced Photothermal Tandem Catalysis. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4044-2

Keywords

Navigation