Skip to main content
Log in

Elaborate Design of Two Novel Fluorescent Zinc-based Metal-Organic Frameworks for Highly Efficient Tetracycline Antibiotics Detection

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The abuse of tetracycline antibiotics has caused great harm to human health and ecosystems. Developing inexpensive, convenient and sensitive methods for the detection of tetracycline antibiotics is highly desirable. Herein, based on the H4ddp ligand [H4ddp=3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid], two novel zinc-based metal-organic frameworks (MOFs) {[Zn3(ddp)2(H2O)4]·3H2O}n (Zn1-ddp) and {[Zn3(ddp)2(H2O)4]·3H2O}n (Zn2-ddp) were successfully designed by delicate structural regulation. Both Zn1-ddp and Zn2-ddp exhibited excellent water and chemical stability and showed excellent fluorescence quenching performance for tetracycline antibiotics. Notably, the more advanced framework structure and better fluorescent performance make Zn1-ddp more sensitive than Zn2-ddp in fluorescent detection with a detection limit of 0.29 µmol/L for tetracycline (TC), 0.09 µmol/L for doxycycline (DOX), 0.10 µmol/L for minocycline (MIN) and metacycline (MEL), 0.19 µmol/L for chlortetracycline (CTC), and 0.67 µmol/L for oxytetracycline (OTC) among tetracycline antibiotics. The fluorescence quenching mechanism of Zn1-ddp and Zn2-ddp for tetracycline antibiotics detection was deeply investigated. The reasons for the superior detection performance of Zn1-ddp over Zn2-ddp were also analyzed in depth through Fourier transform infrared spectrophotometry (FTIR), X-ray photoelectron spectroscopy (XPS) analysis and framework structure analysis. The developed method opens up a new perspective for antibiotics detection based on zinc-based MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao Y., Wu J., Wang J., Fan Y., Zhang S., Dai W., ACS Appl. Mater. Interfaces, 2020, 12, 11036.

    Article  CAS  PubMed  Google Scholar 

  2. Xu Q.-W., Ga D., Cui R., Li X., CrystEngComm, 2020, 22, 740.

    Article  CAS  Google Scholar 

  3. Liu L., Chen Q., Lv J., Li Y., Wang K., Li J.-R., Inorg. Chem., 2022, 61, 8015.

    Article  CAS  PubMed  Google Scholar 

  4. Ding L., Cao Y., Li H., Wang F., Guo D.-Y., Yang W.-T., Pan Q., Food Chemistry, 2022, 373, 131669.

    Article  CAS  PubMed  Google Scholar 

  5. Yao C.-X., Zhao N., Liu J.-C., Chen L.-J., Liu J.-M., Fang G.-Z., Wang S., Polymers, 2020, 12, 691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong Z., Song Z., Ma Y., Zhu M., Zhang Y., Wu S., Gao E., Chem. Asian J., 2021, 16, 1773.

    Article  CAS  PubMed  Google Scholar 

  7. Liu L., Chen X.-L., Cai M., Yan R.-K., Cui H.-L., Yang H., Wang J.-J., Spectrochim Acta A: Mol. Biomol. Spectrosc., 2023, 289, 122228.

    Article  CAS  PubMed  Google Scholar 

  8. Cui L.-S, Zhu B., Huang K.-R., Gao Y.-L., Li Y.-C., Long J.-Q., Journal of Solid State Chemistry, 2020, 290, 121526.

    Article  CAS  Google Scholar 

  9. Chen J., Zhang Q., Xu F., Li, S., Microchemical Journal, 2021, 170, 106673.

    Article  CAS  Google Scholar 

  10. Zhang Y.-Q, Wu X.-H., Mao S., Tao W.-Q., Li Z., Talanta, 2019, 204, 344.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong W.-B., Li R.-X., Lv J., He T., Xu M.-M., Wang B., Xie L.-H., Li J.-R., Inorganic Chemistry Frontiers., 2020, 7, 1161.

    Article  CAS  Google Scholar 

  12. Li C., Zhu L., Yang W., He X., Zhao S., Zhang X., Tang W., Wang J., Yue T., Li Z., J. Agric. Food Chem., 2019, 67, 1277.

    Article  CAS  PubMed  Google Scholar 

  13. Xia T., Yang X., Zhang R., Huang A., Hu K., Hao F., Liu Y., Deng Q., Yang S., Wen X., Talanta, 2023, 256, 124316.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu X., Gu S., Guo D., Huang X., Chen N., Niu B., Deng X., Food Hydrocolloids, 2023, 134, 107978.

    Article  CAS  Google Scholar 

  15. Han Q., Liu Y., Huo Y., Li D., Yang X., Molecules, 2022, 27, 2694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia W., Zhang J., Fan R., Zhu K., Gai S., Tao H., Ji N. H., Yang Y., ACS Appl. Mater. Interfaces, 2023, 15, 11163.

    Article  CAS  PubMed  Google Scholar 

  17. Jia W., Fan R., Zhang J., Geng Z., Li P., Sun J., Gai S., Zhu K., Jiang X., Yang Y., Food Chemistry, 2022, 377, 132054.

    Article  CAS  PubMed  Google Scholar 

  18. Gai S., Zhang J., Fan R., Xing K., Chen W., Zhu K., Zheng X., Wang P., Fang X., Yang Y., ACS Appl. Mater. Interfaces, 2020, 12, 8650.

    Article  CAS  PubMed  Google Scholar 

  19. Fu B., Chen J., Cao Y., Li H., Gao F., Guo D.-Y., Wang F., Pan Q., Sensors and Actuators B: Chemical, 2022, 369, 132261.

    Article  CAS  Google Scholar 

  20. Li J., Yao R., Deng B., Li Z., Tuo K., Fan C., Liu G., Pu S., Chemical Engineering Journal, 2023, 464, 142626.

    Article  CAS  Google Scholar 

  21. Wang X., Zhu R., Wang X., Liu F., Gao Y., Guan R., Chen Y., Inorganic Chemistry Communications, 2023, 149, 110423.

    Article  CAS  Google Scholar 

  22. Zhang Y., Liu Y., Karmaker P., Zhang L., Yang K., Chen L., Yang X., ACS Appl. Mater. Interfaces, 2023, 15, 6177.

    Article  CAS  PubMed  Google Scholar 

  23. Wang C., Ren G., Tan Q., Che G., Luo J., Li M., Zhou Q., Guo D.-Y., Pan Q., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 299, 122813.

    Article  Google Scholar 

  24. Yang W., Zheng X., Gao F., Li H., Fu B., Guo D.-Y., Wang F., Pan Q., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 270, 120785.

    Article  Google Scholar 

  25. Cai G., Yan P., Zhang L., Zhou H.-C., Jiang H.-L., Chemical Reviews, 2021, 121, 12278.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z., Li X., Yang C., Cheng K., Tan T., Lv Y., Liu Y., Advanced Science, 2021, 8, 2108113.

    Google Scholar 

  27. Ali R., Meng H., Li Z., Molecules, 2022, 27, 100.

    Google Scholar 

  28. Lu G., Meng G., Liu Q., Feng L., Luo J., Liu X., Luo Y., Chu P., Advanced Powder Materials, 2024, 3, 100154.

    Article  Google Scholar 

  29. Yuan X., Li L., Shi Z., Liang H., Li S., Qiao Z., Advanced Powder Materials, 2022, 1, 100026.

    Article  Google Scholar 

  30. Zhu K., Fan R., Zheng X., Wang P., Chen W., Sun T., Gai S., Zhou X., Yang Y., J. Mater. Chem. C, 2019, 7, 15057.

    Article  CAS  Google Scholar 

  31. Zhong J., Yuan X., Xiong J., Wu X., Lou W., Environmental Research, 2023, 226, 115633.

    Article  CAS  PubMed  Google Scholar 

  32. Pi Y., Cui L., Luo W., Li H., Ma Y., Ta N., Wang X., Gao R., Wang D., Yang Q., Liu J., Angew. Chem. Int. Ed., 2023, 62, e202307096.

    Article  CAS  Google Scholar 

  33. Li Z., Xu K., Qin L., Zhao D., Yang N., Wang D., Yang Y., Adv. Mater., 2023, 35, 2203890.

    Article  CAS  Google Scholar 

  34. Ma Y., Bi R., Yang M., Wei P., Qi J., Wang J., Yu R., Wang D., J Nanopart Res., 2023, 25, 14.

    Article  CAS  Google Scholar 

  35. Wei Y., Cheng Y., Zhao D., Feng Y., Wei P., Wang J., Ge W., Wang D., Angew. Chem. Int. Ed., 2023, 62, e202302621.

    Article  CAS  Google Scholar 

  36. Yazhini C., Rafi J., Chakrabory P., Kapse S., Thapa R., Neppolian B., Journal of Cleaner Production., 2022, 373, 133929.

    Article  CAS  Google Scholar 

  37. Zhang X.-Y., Wang K., Chang Y., Hu X.-L., Su Z.-M., Zhou E.-L., Journal of Solid State Chemistry, 2022, 313, 123170.

    Article  CAS  Google Scholar 

  38. Chen H., Chen J., Yuan C., Yu L., Sun M., Huang D., Liu S., Wang S., Dyes and Pigments, 2022, 208, 110887.

    Article  CAS  Google Scholar 

  39. Wang B., Liu J.-H., Yu J., Lv J., Dong C., Li J.-R., J. Hazard Mater., 2020, 382, 121018.

    Article  CAS  PubMed  Google Scholar 

  40. Rosales-Vázquez L., Valdes-García J., Germán-Acacio J., Páez-Franco J., Martínez-Otero D., Vilchis-Nestor A., Barroso-Flores J., Sánchez-Mendieta V., Dorazco-González A., J. Mater. Chem. C, 2022, 10, 5944.

    Article  Google Scholar 

  41. Hu J.-S., Dong S.-J., Wu K., Zhang X.-L., Jiang J., Yuan, J. Zheng M.-D., Sensors and Actuators B: Chemical, 2019, 283, 255.

    Article  CAS  Google Scholar 

  42. Zhao D., Liu X.-H., Zhao Y., Wang P., Liu Y., Azam M., Al-Resayes S., Lu Y., Sun W.-Y., J. Mater. Chem. A, 2017, 5, 15797.

    Article  CAS  Google Scholar 

  43. Zhu G.-S., Cheng S.-L., Zhou Z.-D., Du B., Shen Y.-Y., Yu B.-Y., Polyhedron, 2022, 217, 115759.

    Article  CAS  Google Scholar 

  44. Sun Z., Sun J., Xi L., Xie J., Wang X., Ma Y., Li L., Cryst. Growth Des., 2020, 20, 5225.

    Article  CAS  Google Scholar 

  45. Li J.-J., Fan T.-T., Qu X.-L., Han H.-L., Li X., Dalton Trans., 2016, 45, 2924.

    Article  CAS  PubMed  Google Scholar 

  46. Yang A.-H., Zou J.-Y., Wang W.-M., Shi X.-Y., Gao H.-L., Cui J.-Z., Zhao B., Inorg. Chem., 2014, 53, 7092.

    Article  CAS  PubMed  Google Scholar 

  47. Cheng X.-H., Liu F.-C., Yunnan Chemical Technology, 1995, 3, 22.

    Google Scholar 

  48. Fan C., Zhang X., Li N., Xu C., Wu R., Zhu B., Zhang G., Bi S., Fan Y., J. Pharm. Biomed. Anal., 2020, 188, 113444.

    Article  CAS  PubMed  Google Scholar 

  49. Xu F., Wu Y., Wu J., Lv D., Yan J., Wang X., Chen X., Liu Z., Peng G., Molecules, 2023, 28, 6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun W., Li M., Fan J., Peng X., Acc. Chem. Res., 2019, 52, 2818.

    Article  CAS  PubMed  Google Scholar 

  51. Li L., Feng G., Ren A., Sun C., Chinese Journal of Chemistry, 2011, 29, 2263.

    Article  CAS  Google Scholar 

  52. Cui J., Xu X., Yang L., Chen C., Qian J., Chen X., Sun D., Chemical Engineering Journal, 2020, 395, 125174.

    Article  CAS  Google Scholar 

  53. Liu C., Sun J., Tan W.-L., Lu J. R., Gengenbach T. R., McNeill C., Ge Z., Cheng Y.-B., Bach U., Nano Lett., 2020, 20, 1240.

    Article  CAS  PubMed  Google Scholar 

  54. Firooz S.-K., Armstrong D.-W., Chemical Reviews, 2012, 112, 869.

    Article  Google Scholar 

  55. Weng X., Huang J., Ye H., Xu H., Cai D., Wang D., Anal. Methods, 2022, 14, 3000.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Z., Chen Y., Wang Z., Hu C., Ma D., Chen W., Ao T., Applied Surface Science, 2021, 542, 148662.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22072034 and 22001050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2024_4043_MOESM1_ESM.pdf

Elaborate Design of Two Novel Fluorescent Zinc-Based Metal-Organic Frameworks for Highly Efficient Tetracycline Antibiotics Detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Ji, C., Zhang, J. et al. Elaborate Design of Two Novel Fluorescent Zinc-based Metal-Organic Frameworks for Highly Efficient Tetracycline Antibiotics Detection. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4043-3

Keywords

Navigation