Skip to main content
Log in

In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Here we employ in-situ UV-Vis spectroscopy to monitor the sulfur redox reaction with oxygen-containing molecules as an additive, for example, biphenyl-4,4′-dicarboxylic acid (BDC). Furthermore, Raman spectrum, electron paramagnetic resonance (EPR), and electrospray ionization-mass spectrometry (ESI-MS) measurements reveal that the formation of BDC-S •‒3 complexes can establish the long-term stability of polysulfide radicals, change the kinetics of sulfur redox reaction, and then generate decent capacity retention and rate capability. According to the density functional theory (DFT) analysis, S •‒3 radicals are the underlying product of S 2‒6 cleavage, owing to the decreased chemical energy and the increased stability of S •‒3 radicals through Lewis acid-base interaction. The assembled Li-S batteries with BDC additive deliver a high reversible capacity of 420 mA·h·g−1 over 200 cycles with over 98% Coulombic efficiency, under the current density of 0.2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ji X., Lee K. T., Nazar L. F., Nat. Mater., 2009, 8(6), 500

    Article  CAS  PubMed  Google Scholar 

  2. Deng R., Wang M., Yu H., Luo S., Li J., Chu F., Liu B., Wu F., Energy Environ. Mater., 2022, 5, 777

    Article  CAS  Google Scholar 

  3. Cheng X.-B., Zhang R., Zhao C.-Z., Zhang Q., Chem. Rev., 2017, 117, 10403

    Article  CAS  PubMed  Google Scholar 

  4. Shi Z., Tian Z., Guo D., Wang Y., Bayhan Z., Alzahrani A. S., Alshareef H. N., ACS Energy Lett., 2023, 8(7), 3054

    Article  CAS  Google Scholar 

  5. Pang Q., Liang X., Kwok C. Y., Nazar L. F., Nat. Energy, 2016, 1, 16132

    Article  CAS  Google Scholar 

  6. Liu R., Wei Z., Peng L., Zhang L., Zohar A., Schoeppner R., Wang P., Wan C., Zhu D., Liu H., Wang Z., Tolbert S. H., Dunn B., Huang Y., Sautet P., Duan X., Nature, 2024, 626, 98

    Article  CAS  PubMed  Google Scholar 

  7. Lin Y., Zheng J., Wang C., Qi Y., Nano Energy, 2020, 75, 104915

    Article  CAS  Google Scholar 

  8. Meng R., He X., Ong S. J. H., Cui C., Song S., Paoprasert P., Pang Q., Xu Z. J., Liang X., Angew. Chem. Int. Ed., 2023, 62(38), e202309046

    Article  CAS  Google Scholar 

  9. Steudel R., Chivers T., Chem. Soc. Rev., 2019, 48(12), 3279

    Article  CAS  PubMed  Google Scholar 

  10. Shin H., Baek M., Gupta A., Char K., Manthiram A., Choi J. W., Adv. Energy Mater., 2020, 10, 2001456

    Article  CAS  Google Scholar 

  11. Zhong N., Lei C., Meng R., Li J., He X., Liang X., Small, 2022, 18, 2200046

    Article  CAS  Google Scholar 

  12. Baek M., Shin H., Char K., Choi J. W., Adv. Mater., 2020, 32, 2005022

    Article  Google Scholar 

  13. Shen Z., Gao Q., Zhu X., Guo Z., Guo K., Song X., Zhao Y., Energy Storage Mater., 2023, 57, 299

    Article  Google Scholar 

  14. Zhang G., Peng H. J., Zhao C. Z., Chen X., Zhao L. D., Li P., Huang J. Q., Zhang Q., Angew. Chem. Int. Ed., 2018, 57(51), 16732

    Article  CAS  Google Scholar 

  15. Feng S., Fu Z.-H., Chen X., Li B.-Q., Peng H.-J., Yao N., Shen X., Yu L., Gao Y.-C., Zhang R., Zhang Q., Angew. Chem. Int. Ed., 2022, 61(52), e202211448

    Article  CAS  Google Scholar 

  16. Hou T. Z., Xu W. T., Chen X., Peng H. J., Huang J. Q., Zhang Q., Angew. Chem. Int. Ed., 2017, 56(28), 8178

    Article  CAS  Google Scholar 

  17. Jin W., Zhang X., Liu M., Zhao Y., Zhang P., Energy Storage Mater., 2024, 67, 103223

    Article  Google Scholar 

  18. Lee D. J., Agostini M., Park J. W., Sun Y. K., Hassoun J., Scrosati B., ChemSusChem, 2013, 6(12), 2245

    Article  CAS  PubMed  Google Scholar 

  19. Lian J., Guo W., Fu Y., J. Am. Chem. Soc., 2021, 143(29), 11063

    Article  CAS  PubMed  Google Scholar 

  20. Zhang G., Zhang Z. W., Peng H. J., Huang J. Q., Zhang Q., Small Methods, 2017, 1(7), 1700134

    Article  Google Scholar 

  21. Cui Y., Fang W., Zhang J., Li J., Wu H., Sun Z., Cai Y., Zhang H., Zhang S., Nano Energy, 2024, 122, 109343

    Article  CAS  Google Scholar 

  22. Fu B., Chen J., Cao Y., Li H., Gao F., Guo D.-Y., Wang F., Pan Q., Sensor Actuat. B-Chem., 2022, 369, 132261

    Article  CAS  Google Scholar 

  23. Yang W., Yang Y., Lin D., Li H., Yang W., Guo D., Pan Q., Inorg. Chem. Front., 2020, 7, 3718

    Article  CAS  Google Scholar 

  24. Chen X., Wang F., Hyun J. Y., Wei T., Qiang J., Ren X., Shin I., Yoon J., Chem. Soc. Rev., 2016, 45(10), 2976

    Article  CAS  PubMed  Google Scholar 

  25. Ren X., Wang J., Peng Z., Lu L., Chem. Sci., 2018, 9, 231

    Article  PubMed  Google Scholar 

  26. Frisch M. J., Gaussian 09, Gaussian Inc., 2009

  27. Boys S. F., Bernardi F., Mol. Phys., 1970, 19, 553

    Article  CAS  Google Scholar 

  28. Lee C., Yang W., Parr R. G., Phys. Rev. B, 1988, 37, 785

    Article  CAS  Google Scholar 

  29. Lee B.-J., Zhao C., Yu J.-H., Kang T.-H., Park H.-Y., Kang J., Jung Y., Liu X., Li T., Xu W., Zuo X.-B., Xu G.-L., Amine K., Yu J.-S., Nat. Commun., 2022, 13, 4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaouche M., Gao X. X., Cyr M., Cotte M., Frouin L., J. Am. Ceram. Soc., 2017, 100(4), 1707

    Article  CAS  Google Scholar 

  31. Wang Q., Zheng J., Walter E., Pan H., Lv D., Zuo P., Chen H., Deng Z. D., Liaw B. Y., Yu X., Yang X., Zhang J.-G., Liu J., Xiao J., J. Electrochem. Soc., 2015, 162(3), A474

    Article  CAS  Google Scholar 

  32. Feng S., Fu Z.-H., Chen X., Li B.-Q., Peng H.-J., Yao N., Shen X., Yu L., Gao Y.-C., Zhang R., Zhang Q., Angew. Chem. Int. Ed., 2022, 61(52), e202211448

    Article  CAS  Google Scholar 

  33. Chivers T., Nature, 1974, 252, 32

    Article  CAS  Google Scholar 

  34. Zou Q., Lu Y. C., J. Phys. Chem. Lett., 2016, 7(8), 1518

    Article  CAS  PubMed  Google Scholar 

  35. Wujcik K. H., Wang D. R., Raghunathan A., Drake M., Pasca T. A., Prendergast, D., Balsara N. P., J. Phys. Chem. C, 2016, 120(33), 18403

    Article  CAS  Google Scholar 

  36. Zhu Y., Zuo Y., Jiao X., Manjunatha R., Ezeigwe E. R., Yan W., Zhang J., Carbon Energy, 2023, 5, e249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21874127, 21721003) and the Development Program of Jilin Province of China (No. YDZJ202101ZYTS164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Ren or Lehui Lu.

Ethics declarations

LU Lehui is an editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, R., Wang, Q., Ren, X. et al. In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries. Chem. Res. Chin. Univ. 40, 279–286 (2024). https://doi.org/10.1007/s40242-024-4027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-024-4027-3

Keywords

Navigation