Skip to main content
Log in

Electrocatalytic Hydrogen Evolution by Binuclear Metal (M=Co, Fe, Mn) Xanthine Bridged Bis-corrole

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Three binuclear metal (M=Co, Fe, Mn) xanthine bridged bis-corrole complexes were synthesized and investigated as electrocatalysts for the hydrogen evolution reaction (HER). All the prepared metal bis-corrole catalysts exhibited good HER performance when using acetic acid (AcOH), trifluoroacetic acid (TFA) and p-toluenesulfonic acid (TsOH) as proton sources. The catalytic HER activities followed an order of Co bis-corrole (1)> Fe bis-corrole (2)> Mn bis-corrole (3) and complex 1 exhibited a significantly lower overpotential at −270 mV (in TsOH). Furthermore, complex 1 may go EECC and EECEC pathways in organic solvents (E: electron transfer step, C: proton coupling) and exhibit an HER activity with a turnover frequency (TOF) of 85 h−1 and a Faraday efficiency of 94% when using water as proton source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Nørskov J. K., Jaramillo T. F., Science, 2017, 355, eaad4998.

    Article  PubMed  Google Scholar 

  2. Zhang W., Lai W., Cao R., Chem. Rev., 2017, 117, 3717.

    Article  CAS  PubMed  Google Scholar 

  3. Liu T., DuBois D. L., Bullock R. M., Nat. Chem., 2013, 5, 228.

    Article  CAS  PubMed  Google Scholar 

  4. Li X., Lv B., Zhang X. P., Jin X., Guo K., Zhou D., Bian H., Zhang W., Apfel U. P., Cao R., Angew. Chem. Int. Ed., 2022, 61, e202114310.

    Article  CAS  Google Scholar 

  5. Zhu W., Li L., Wang Y., Mack J., Dingiswayo S., Nyokong T., Liang X., Dyes Pigments, 2022, 199, 110046.

    Article  CAS  Google Scholar 

  6. Xu X., Zhao Y., Yang G., Si L.-P., Zhang H., Liu H. Y., Int. J. Hydrog. Energy, 2022, 47, 19062.

    Article  CAS  Google Scholar 

  7. Chen Q. C., Fite S., Fridman N., Tumanskii B., Mahammed A., Gross Z., ACS Catal., 2022, 12, 4310.

    Article  CAS  Google Scholar 

  8. Akyüz D., Dinçer H., Özkaya A. R., Koca A., Int. J. Hydrog. Energy, 2015, 40, 12973.

    Article  Google Scholar 

  9. Kousar N., Giddaerappa, Sannegowda L. K., Int. J. Hydrog. Energy, 2024, 50, 37.

    Article  CAS  Google Scholar 

  10. Özçeşmeci İ., Demir A., Akyüz D., Koca A., Gül A., Inorganica Chim. Acta, 2017, 466, 591.

    Article  Google Scholar 

  11. McCrory C. C. L., Uyeda C., Peters J. C., J. Am. Chem. Soc., 2012, 134, 3164.

    Article  CAS  PubMed  Google Scholar 

  12. Wang C. L., Liu W. X., Zhan S. Z., Polyhedron, 2020, 192, 114863.

    Article  CAS  Google Scholar 

  13. Khnayzer R. S., Thoi V. S., Nippe M., King A. E., Jurss J. W., Roz K. A. E., Long J. R., Chang C. J., Castellano F. N., Energy Environ. Sci., 2014, 7, 1477.

    Article  CAS  Google Scholar 

  14. Roubelakis M. M., Bediako D. K., Dogutan D. K., Nocera D. G., Energy Environ. Sci., 2012, 5, 7737.

    Article  CAS  Google Scholar 

  15. Wang Y., Zhang M., Liu Y., Zheng Z., Liu B., Chen M., Guan G., Yan K., Adv. Sci., 2023, 10, 2207519.

    Article  CAS  Google Scholar 

  16. Kasemthaveechok S., Fabre B., Loget G., Gramage-Doria R., Catal. Sci. Technol., 2019, 9, 1301.

    Article  CAS  Google Scholar 

  17. Zhong Y. Q., Hossain Md. S., Chen Y., Fan Q. H., Zhan S. Z., Liu H. Y., Transit. Met. Chem., 2019, 44, 399.

    Article  CAS  Google Scholar 

  18. Yuan S., Cui L., He X., Zhang W., Asefa T., Int. J. Hydrog. Energy, 2020, 45, 28860.

    Article  CAS  Google Scholar 

  19. Zhang Q., Lei H., Guo H., Wang Y., Gao Y., Zhang W., Cao R., ChemSusChem, 2022, 15, e202200086.

    Article  CAS  PubMed  Google Scholar 

  20. Liang Z., Guo H., Lei H., Cao R., Chin. Chem. Lett., 2022, 33, 3999.

    Article  CAS  Google Scholar 

  21. Mondal B., Sengupta K., Rana A., Mahammed A., Botoshansky M., Dey S. G., Gross Z., Dey A., Inorg. Chem., 2013, 52, 3381.

    Article  CAS  PubMed  Google Scholar 

  22. Liang X., Niu Y., Zhang Q., Mack J., Yi X., Hlatshwayo Z., Nyokong T., Li M., Zhu W., Dalton Trans., 2017, 46, 6912.

    Article  CAS  PubMed  Google Scholar 

  23. Li X., Lei H., Guo X., Zhao X., Ding S., Gao X., Zhang W., Cao R., ChemSusChem, 2017, 10, 4632.

    Article  CAS  PubMed  Google Scholar 

  24. Xie L., Tian J., Ouyang Y., Guo X., Zhang W., Apfel U., Zhang W., Cao R., Angew. Chem. Int. Ed., 2020, 59, 15844.

    Article  CAS  Google Scholar 

  25. Huang G., Wagner T., Wodrich M. D., Ataka K., Bill E., Ermler U., Hu X., Shima S., Nat. Catal., 2019, 2, 537.

    Article  CAS  Google Scholar 

  26. Chandra S., Hazari A. S., Song Q., Hunger D., Neuman Nicolás I., Slageren J. V., Klemm E., Sarkar B., ChemSusChem, 2023, 16, e202201146.

    Article  CAS  PubMed  Google Scholar 

  27. Khusnutdinova D., Wadsworth B. L., Flores M., Beiler A. M., Reyes Cruz E. A., Zenkov Y., Moore G. F., ACS Catal., 2018, 8, 9888.

    Article  CAS  Google Scholar 

  28. Jökel J., Schwer F., Delius M. von, Apfel U.-P., Chem. Commun., 2020, 56, 14179.

    Article  Google Scholar 

  29. Broussard M. E., Juma B., Train S. G., Peng W.-J., Laneman S. A., Stanley G. G., Science, 1993, 260, 1784.

    Article  CAS  PubMed  Google Scholar 

  30. Tang Y., Li M. N., Huang Z. Y., Liu H. Y., Xiao X. Y., Zhang S. Q., Asian J. Org. Chem., 2022, 11, e202200349.

    Article  CAS  Google Scholar 

  31. Besenyei G., Bitter I., Párkányi L., Szalontai G., Baranyai P., Kunsági-Máté É, Faigl F., Grün A., Kubinyi M., Polyhedron, 2013, 55, 57.

    Article  CAS  Google Scholar 

  32. Liu Z. Y., Lai J. W., Yang G., Ren B.-P., Lv Z. Y., Si L. P., Zhang H., Liu H.-Y., Catal. Sci. Technol., 2022, 12, 5125.

    Article  CAS  Google Scholar 

  33. Lv Z.-Y., Yang G., Ren B.-P., Liu Z. Y., Zhang H., Si L. P., Liu H. Y., Chang C.-K., Eur. J. Inorg. Chem., 2023, 26, e202200755.

    Article  CAS  Google Scholar 

  34. Peng W. Y., Lan J., Zhu Z. M., Si L. P., Zhang H., Zhan S. Z., Liu H. Y., Inorg. Chem. Commun., 2022, 140, 109453.

    Article  CAS  Google Scholar 

  35. Chen Y., Fan Q. H., Hossain M. S., Zhan S. Z., Liu H. Y., Si L. P., Eur. J. Inorg. Chem., 2020, 2020, 491.

    Article  CAS  Google Scholar 

  36. Ganguly S., Conradie J., Bendix J., Gagnon K. J., McCormick L. J., Ghosh A., J. Phys. Chem. A, 2017, 121, 9589.

    Article  CAS  PubMed  Google Scholar 

  37. Lei H., Han A., Li F., Zhang M., Han Y., Du P., Lai W., Cao R., Phys. Chem. Chem. Phys., 2014, 16, 1883.

    Article  CAS  PubMed  Google Scholar 

  38. Paolesse R., Licoccia S., Bandoli G., Dolmella A., Boschi T., Inorg. Chem., 1994, 33, 1171.

    Article  CAS  Google Scholar 

  39. Wan B., Cheng F., Lan J., Zhao Y., Yang G., Sun Y.-M., Si L.-P., Liu H.-Y., Int. J. Hydrog. Energy, 2023, 48, 5506.

    Article  CAS  Google Scholar 

  40. Cummins D. C., Alvarado J. G., Zaragoza J. P. T., Effendy Mubarak M. Q., Lin Y.-T., de Visser S. P., Goldberg D. P., Inorg. Chem., 2020, 59, 16053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao B., Ou Z., Chen X., Huang S., Li B., Fang Y., Kadish K. M., J. Porphyr. Phthalocyanines, 2014, 18, 1131.

    Article  CAS  Google Scholar 

  42. Felton G. A. N., Glass R. S., Lichtenberger D. L., Evans D. H., Inorg. Chem., 2006, 45, 9181.

    Article  CAS  PubMed  Google Scholar 

  43. Fang J. J., Lan J., Yang G., Yuan G. Q., Liu H. Y., Si L. P., New J. Chem., 2021, 45, 5127.

    Article  CAS  Google Scholar 

  44. Bediako D. K., Solis B. H., Dogutan D. K., Roubelakis M. M., Maher A. G., Lee C. H., Chambers M. B., Hammes-Schiffer S., Nocera D. G., Proc. Natl. Acad. Sci., 2014, 111, 15001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang G., Cen J. H., Lan J., Li M. Y., Zhan X., Yuan G. Q., Liu H. Y., ChemSusChem, 2022, 15, e202201553.

    Article  CAS  PubMed  Google Scholar 

  46. Wang N., Lei H., Zhang Z., Li J., Zhang W., Cao R., Chem. Sci., 2019, 10, 2308.

    Article  CAS  PubMed  Google Scholar 

  47. Lee J. L., Biswas S., Sun C., Ziller J. W., Hendrich M. P., Borovik A. S., J. Am. Chem. Soc., 2022, 144, 4559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singha A., Mittra K., Dey A., Dalton Trans., 2019, 48, 7179.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng X. M., Liu Zh. Y., Fang J. J., Yam F., Liu H. Y., Xiao X. Y., Chang C.-K., Russ. J. Gen. Chem., 2021, 91, 1147.

    Article  CAS  Google Scholar 

  50. Ahmad E., Rai S., Padhi S. K., Int. J. Hydrog. Energy, 2019, 44, 16467.

    Article  CAS  Google Scholar 

  51. Lei H., Fang H., Han Y., Lai W., Fu X., Cao R., ACS Catal., 2015, 5, 5145.

    Article  CAS  Google Scholar 

  52. Kumar A., Fite S., Raslin A., Kumar S., Mizrahi A., Mahammed A., Gross Z., ACS Catal., 2023, 13, 13344.

    Article  CAS  Google Scholar 

  53. Liang Y. Y., Li M. Y., Shi L., Lin D.-Z., Zhan S.-Z., Liu H. Y., J. Coord. Chem., 2021, 74, 1414.

    Article  CAS  Google Scholar 

  54. Wu Z. Y., Xue H., Wang T., Guo Y., Meng Y. S., Li X., Zheng J., Brückner C., Rao G., Britt R. D., Zhang J. L., ACS Catal., 2020, 10, 2177.

    Article  CAS  Google Scholar 

  55. Chaturvedi A., McCarver G. A., Sinha S., Hix E. G., Vogiatzis K. D., Jiang J., Angew. Chem. Int. Ed., 2022, 61, e202206325.

    Article  CAS  Google Scholar 

  56. Lin H., Hossain M. S., Zhan S. Z., Liu H. Y., Si L. P., Appl. Organomet. Chem., 2020, 34, e5583.

    Article  CAS  Google Scholar 

  57. Wang A., Cheng L., Zhao W., Shen X., Zhu W., J. Colloid Interface Sci., 2020, 579, 598.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang D. X., Yuan H. Q., Wang H. H., Ali A., Wen W. H., Xie A. N., Zhan S. Z., Liu H. Y., Transit. Met. Chem., 2017, 42, 773.

    Article  CAS  Google Scholar 

  59. Qi X. W., Yang G., Guo X. S., Si L. P., Zhang H., Liu H. Y., Eur. J. Inorg. Chem., 2023, 26, e202200613.

    Article  CAS  Google Scholar 

  60. Ren B. P., Yang G., Lv Z. Y., Liu Z. Y., Zhang H., Si L. P., Liu H. Y., Inorg. Chem. Commun., 2023, 152, 110663.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21671068, 22005052) and the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology, China (No. FC202211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Si, Xinyan Xiao or Haiyang Liu.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Cen, J., Yang, G. et al. Electrocatalytic Hydrogen Evolution by Binuclear Metal (M=Co, Fe, Mn) Xanthine Bridged Bis-corrole. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4013-9

Keywords

Navigation