Skip to main content
Log in

Predication of Selective Ring-opening Hydrogenolysis for Furfuryl Alcohol to Produce Pentanediol over Dual-atom Catalysts

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Selective activation of C-O bond is of fundamental importance in the precise conversion of oxygenates into value-added compounds in an atom-economic and sustainable manner, and meanwhile, the structurally well-defined dual-atoms catalysts (DACs) have been scarcely investigated in this field. In this study, a series of transition metal DACs anchored on nitrogen-doped graphene (TM2/NC, TM= Pt, Ir, Rh, Pd, Ru, Co, Ni and Cu) was constructed to make a comprehensive investigation of their selectivity in the hydrogenative transformation of furfuryl alcohol (FAL), an important biomass platform molecule, to 1,2-pentanediol (1,2-PeD) via selective cleavage of furanic C5-O bond, by density functional theory (DFT) calculations and microkinetic modeling. We found that Ir2/NC demonstrated a high selectivity for the cleavage of furanic C5-O bond to produce 1,2-PeD, while the production of THFAL or 1,5-pentanediol (1,5-PeD) on other TM2/NC catalysts are more favorable. Furthermore, we found that the selective C-O bond cleavage of FAL furan ring is affected by the orbital overlap between the d-orbitals of the anchored metal atoms and the p-orbitals of the adsorbed C atom in FAL, suggesting that the selectivity of the C-O bond cleavage is inextricably related with the electronic property of the anchored metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De S., Dutta S., Saha B., Catal. Sci. Technol., 2016, 6 (20), 7364

    Article  CAS  Google Scholar 

  2. Delidovich I., Hausoul P. J. C., Deng L., Pfützenreuter R., Rose M., Palkovits R., Chem. Rev., 2016, 116 (3), 1540

    Article  PubMed  CAS  Google Scholar 

  3. Cai C. M., Zhang T., Kumar R., Wyman C. E., J. Chem. Technol. Biotechnol., 2014, 89 (1), 2

    Article  CAS  Google Scholar 

  4. Chen S., Wojcieszak R., Dumeignil F., Marceau E., Royer S., Chem. Rev., 2018, 118 (22), 11023

    Article  PubMed  CAS  Google Scholar 

  5. Zhao Z., Yang C., Sun P., Gao G., Liu Q., Huang Z., Li F., ACS Catal., 2023, 13 (8), 5170

    Article  CAS  Google Scholar 

  6. Zhao Z., Gao G., Xi Y., Wang J., Sun P., Liu Q., Yan W., Cui Y., Jiang Z., Li F., Chem, 2022, 8 (4), 1034

    Article  CAS  Google Scholar 

  7. Zhang B., Zhu Y., Ding G., Zheng H., Li Y., Green Chem., 2012, 14 (12), 3402

    Article  CAS  Google Scholar 

  8. Wijaya H. W., Kojima T., Hara T., Ichikuni N., Shimazu S., ChemCatChem, 2017, 9 (14), 2869

    Article  CAS  Google Scholar 

  9. Zhao Z., Bababrik R., Xue W., Li Y., Briggs N. M., Nguyen D.-T., Nguyen U., Crossley S. P., Wang S., Wang B., Resasco D. E., Nat. Catal, 2019, 2 (5), 431

    Article  CAS  Google Scholar 

  10. Delaney H., Synthesis of the Fungicide Propiconazole a Systemic Foliar Fungicide, Technological University Dublin, Ireland, 2000

    Google Scholar 

  11. Southby D. T., Szajewski R. P., Szajewski R., Southby D., Aqueous Inkjet Ink Useful for Printing Photo-Image on Both Photo-Glossy Receiver and Plain Paper Comprises Water, 1,2-Pentanediol, Humectant Distinct from 1,2-Pentanediol, and Dispersed Pigment Colorant, US2009169762-A1; WO2009085168-A1; EP2225335-A1; US8356892-B2; EP2225335-B1, 2009

  12. Liu H., Huang Z., Kang H., Xia C., Chen J., Chinese Journal of Catalysis, 2016, 37 (5), 700

    Article  CAS  Google Scholar 

  13. Mizugaki T., Yamakawa T., Nagatsu Y., Maeno Z., Mitsudome T., Jitsukawa K., Kaneda K., ACS Sustainable Chem. Eng., 2014, 2 (10), 2243

    Article  CAS  Google Scholar 

  14. Zhu Y., Zhao W., Zhang J., An Z., Ma X., Zhang Z., Jiang Y., Zheng L., Shu X., Song H., Xiang X., He J., ACS Catal., 2020, 10 (15), 8032

    Article  CAS  Google Scholar 

  15. Ma R., Wu X.-P., Tong T., Shao Z.-J., Wang Y., Liu X., Xia Q., Gong X.-Q., ACS Catal., 2017, 7 (1), 333

    Article  CAS  Google Scholar 

  16. Jenness G. R., Wan W., Chen J. G., Vlachos D. G., ACS Catal., 2016, 6 (10), 700

    Article  Google Scholar 

  17. Dai D., Feng C., Wang M., Du Q., Liu D., Pan Y., Liu Y., Catal. Sci. Technol., 2022, 12 (19), 5879

    Article  CAS  Google Scholar 

  18. Ying Y., Luo X., Qiao J., Huang H., Adv. Funct. Mater., 2021, 31 (3), 2007423

    Article  CAS  Google Scholar 

  19. Pan Y., Zhang C., Liu Z., Chen C., Li Y., Matter, 2020, 2 (1), 78

    Article  Google Scholar 

  20. Cao X., Zhao L., Wulan B., Tan D., Chen Q., Ma J., Zhang J., Angew. Chem. Int Ed., 2022, 61 (6), e202113918

    Article  CAS  Google Scholar 

  21. Li X., Zhong W., Cui P., Li J., Jiang J., J. Phys. Chem. Lett., 2016, 7 (9), 1750

    Article  PubMed  CAS  Google Scholar 

  22. Chen Z. W., Yan J., Jiang Q., Small Methods., 2019, 3 (6), 1800291

    Article  Google Scholar 

  23. Di Liberto G., Cipriano L. A., Pacchioni G., J. Am. Chem. Soc., 2021, 143 (48), 20431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cui X., Tang C., Zhang Q., Advanced Energy Materials, 2018, 8 (22), 1800369

    Article  Google Scholar 

  25. Ren W., Tan X., Yang W., Jia C., Xu S., Wang K., Smith S. C., Zhao C., Angew. Chem. Int. Ed., 2019, 58 (21), 6972

    Article  CAS  Google Scholar 

  26. Zhao S., Yi H., Tang X., Gao F., Wang J., Huang Y., Yang Z., Adsorption, 2017, 23 (7/8), 1013

    Article  CAS  Google Scholar 

  27. Blöchl P. E., Phys. Rev. B, 1994, 50 (24), 17953

    Article  Google Scholar 

  28. Kresse G., Joubert D., Phys. Rev. B, 1999, 59 (3), 1758

    Article  CAS  Google Scholar 

  29. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77 (18), 3865

    Article  PubMed  CAS  Google Scholar 

  30. Kresse G., Computational Materials Science, 1996, 6 (1), 15

    Article  CAS  Google Scholar 

  31. Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54 (16), 11169

    Article  CAS  Google Scholar 

  32. Grimme S., Antony J., Ehrlich S., Krieg H., The Journal of Chemical Physics, 2010, 132 (15), 154104

    Article  PubMed  Google Scholar 

  33. Henkelman G., The Journal of Chemical Physics, 2000, 113 (22), 9901

    Article  CAS  Google Scholar 

  34. Henkelman G., Jónsson H., The Journal of Chemical Physics, 1999, 111 (15), 7010

    Article  CAS  Google Scholar 

  35. Heyden A., Bell A. T., Keil F. J., The Journal of Chemical Physics, 2005, 123 (22), 224101

    Article  PubMed  Google Scholar 

  36. Ribeiro R. F., Marenich A. V., Cramer C. J., Truhlar D. G., J. Phys. Chem. B, 2011, 115 (49), 14556

    Article  PubMed  CAS  Google Scholar 

  37. Ulissi Z. W., Medford A. J., Bligaard T., Nørskov J. K., Nat. Commun., 2017, 8 (1), 14621

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deringer V. L., Tchougréeff A. L., Dronskowski R., J. Phys. Chem. A, 2011, 115 (21), 5461

    Article  PubMed  CAS  Google Scholar 

  39. Maintz S., Deringer V. L., Tchougréeff A. L., Dronskowski R., J. Comput. Chem., 2016, 37 (11), 1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Qian X., J. Phys. Chem. B, 2013, 117 (39), 11460

    Article  PubMed  CAS  Google Scholar 

  41. Gilkey M. J., Mironenko A. V., Yang L., Vlachos D. G., Xu B., ChemSusChem, 2016, 9 (21), 3113

    Article  PubMed  CAS  Google Scholar 

  42. Trinh Q. T., Chethana B. K., Mushrif S. H., J. Phys. Chem. C, 2015, 119 (30), 17137

    Article  CAS  Google Scholar 

  43. Banerjee A., Mushrif S. H., ChemCatChem, 2017, 9 (14), 2828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFA1504601), a Startup Program of the State Key Laboratory for Oxo Synthesis and Selective Oxidation of LICP, China (No. E0SX0184), the National Natural Science Foundation of China (Nos. 22102193, 21972151), and the Key Research Program of Frontier Science of CAS (No. QYZDJSSW-SLH051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjie Xi, Bin Hu or Fuwei Li.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2024_3243_MOESM1_ESM.pdf

Predication of selective ring-opening hydrogenolysis for furfuryl alcohol to produce pentanediol over dual-atom catalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, J., Xi, Y. et al. Predication of Selective Ring-opening Hydrogenolysis for Furfuryl Alcohol to Produce Pentanediol over Dual-atom Catalysts. Chem. Res. Chin. Univ. 40, 55–63 (2024). https://doi.org/10.1007/s40242-024-3243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-024-3243-1

Keywords

Navigation