Skip to main content
Log in

Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Two novel metal-organic frameworks (MOFs), JLU-MOF130 ([In(NH2−BDC)(Imi)(1H−Imi)]·DMF·H2O, NH2−H2BDC=2-aminobenzene-1,4-dicarboxylic acid, 1H−Imi=1H-imidazole, DMF=N,N-dimethylformamide) and JLU-MOF131 ([In(1,4-NDC)(Imi) (1H−Imi)]·DMF0.5, 1,4-H2NDC=1,4-naphthalene-dicarboxylic acid), were synthesized. JLU-MOF130 features a three-dimensional (3D) architecture with a neb topology. JLU-MOF131 is characterized by a two-dimensional (2D) structure with an sql topology. JLU-MOF130 has excellent fluorescence detection performance towards Fe3+, 2,4-dinitrophenol (2,4-DNP), and 2,4,6-trinitrophenol (TNP), but the fluorescence detection performance of JLU-MOF131 is further improved by converting NH2−H2BDC to more conjugated 1,4-H2NDC. The Stern-Volmer (SV) quenching constant (KSV) values of JLU-MOF130 sensing 2,4-DNP, TNP, and Fe3+ are 5.24×104, 4.44×104, and 4.73×103 L/mol, respectively. The corresponding limit of detection (LOD) values are 1.17, 1.36, and 14.59 µmol/L. The KSV values for JLU-MOF131 are 1.26×105, 9.02×104, and 8.48×103 L/mol, and the corresponding LOD values are 0.35, 0.42, and 3.60 µmol/L, respectively. interestingly, the emission wavelengths of the two MOFs obviously shift as the fluorescence emission intensities decrease upon the addition of 2,4-DNP and TNP, which can be applied in selective detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan W., Zhang C. l., Chen S. G., Han L. J., Zheng H. G., ACS Appl. Mater. Interfaces, 2017, 9, 1629

    Article  PubMed  CAS  Google Scholar 

  2. Goswami R., Mandal S. C., Pathak B., Neogi S., ACS Appl. Mater. Interfaces, 2019, 11, 9042

    Article  PubMed  CAS  Google Scholar 

  3. Tajahmadi S., Molavi H., Ahmadijokani F., Shamloo A., Shojaei A., Sharifzadeh M., Rezakazemi M., Fatehizadeh A., Aminabhavi T. M., Arjmand M., J. Control. Release., 2023, 353, 1

    Article  PubMed  CAS  Google Scholar 

  4. Jie B., Lin H., Zhai Y., Ye J., Zhang D., Xie Y., Zhang X., Yang Y., Chem. Eng. J., 2023, 454, 139931

    Article  CAS  Google Scholar 

  5. Sahoo S., Mondal S., Sarma D., Coord. Chem. Rev., 2022, 470, 214707

    Article  CAS  Google Scholar 

  6. Wang X. S., Li L., Yuan D. Q., Huang Y. B., Cao R., J. Hazard. Mater., 2018, 344, 283

    Article  PubMed  CAS  Google Scholar 

  7. Mauricio F. G. M., Silva J. Y. R., Talhavini M., Júnior S. A., Weber I. T., Microchem. J., 2019, 150, 104037

    Article  CAS  Google Scholar 

  8. Xu Q. Y., Tan Z., Liao X. W., Wang C., Chin. Chem. Lett., 2022, 33, 22

    Article  CAS  Google Scholar 

  9. Das A., Bej S., Pandit N. R., Banerjee P., Biswas B., J. Mater. Chem. A, 2023, 11, 6090

    Article  CAS  Google Scholar 

  10. Li H. Y., Zhao S. N., Zang S. Q., Li J., Chem. Soc. Rev., 2020, 49, 6364

    Article  PubMed  CAS  Google Scholar 

  11. Shi Y., Zou Y., Khan M. S., Zhang M., Yan J., Zheng X., Wang W., Xie Z., J. Mater. Chem. C, 2023, 11, 3692

    Article  CAS  Google Scholar 

  12. D’Alessandro D. M., Smit B., Long J. R., Angew. Chem. Int. Ed., 2010, 49, 6058

    Article  Google Scholar 

  13. Suh M. P., Park H. J., Prasad T. K., Lim D., Chem. Rev., 2012, 112, 782

    Article  PubMed  CAS  Google Scholar 

  14. Li J., Sculley J., Zhou H. C., Chem. Rev., 2012, 112, 869

    Article  PubMed  CAS  Google Scholar 

  15. Li J., Kuppler R. J., Zhou H. C., Chem. Soc. Rev., 2009, 38, 1477

    Article  PubMed  CAS  Google Scholar 

  16. Siegelman R. L., Kim E. J., Long J. R., Nat. Mater., 2021, 20, 1060

    Article  PubMed  CAS  Google Scholar 

  17. Rieth A. J., Yang S., Wang E. N., Dincă M., ACS Central Science, 2017, 3, 668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Furukawa H., Gándara F., Zhang Y.-B., Jiang J., Queen W. L., Hudson M. R., Yaghi O. M., J. Am. Chem. Soc., 2014, 136, 4369

    Article  PubMed  CAS  Google Scholar 

  19. Yamazaki Y., Miyaji M., Ishitani O., J. Am. Chem. Soc., 2022, 144, 6640

    Article  PubMed  CAS  Google Scholar 

  20. Tombesi A., Pettinari C., Inorganics, 2021, 9, 81

    Article  CAS  Google Scholar 

  21. Wang Q., Gao Q. Y., Al-Enizi A. M., Nafady A., Ma S. Q., Inorg. Chem. Front., 2020, 7, 300

    Article  CAS  Google Scholar 

  22. Konnerth H., Matsagar B. M., Chen S. S., Prechtl M. H. G., Shieh F. K., Wu K. C. W., Coord. Chem. Rev., 2020, 416, 213319

    Article  CAS  Google Scholar 

  23. Zhu L., Liu X. Q., Jiang H. L., Sun L. B., Chem. Rev., 2017, 117, 8129

    Article  PubMed  CAS  Google Scholar 

  24. Lee J., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., Hupp J. T., Chem. Soc. Rev., 2009, 38, 1450

    Article  PubMed  CAS  Google Scholar 

  25. Niu L., Wu T. Z., Chen M., Yang L., Yang J. G., Wang Z. X., Kornyshev A. A., Jiang H. L., Bi S., Feng G., Adv. Mater., 2022, 34, 2200999

    Article  CAS  Google Scholar 

  26. Qiu T., Liang Z., Guo W., Tabassum H., Gao S., Zou R. Q., ACS Energy Lett., 2020, 5, 520

    Article  CAS  Google Scholar 

  27. Liang Z. B., Qu C., Guo W., Zou R., Xu Q., Adv. Mater., 2018, 30, 1702891

    Article  Google Scholar 

  28. Chaemchuen S., Xiao X., Klomkliang N., Yusubov M. S., Verpoort F., Nanomaterials, 2018, 8, 661

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rojas S., Horcajada P., Chem. Rev., 2020, 120, 8378

    Article  PubMed  CAS  Google Scholar 

  30. Mon M., Bruno R., Ferrando-Soria J., Armentano D., Pardo E., J. Mater. Chem. A, 2018, 6, 4912

    Article  CAS  Google Scholar 

  31. Li J., Wang X., Zhao G., Chen C., Chai Z., Alsaedi A., Hayat T., Wang X., Chem. Soc. Rev., 2018, 47, 2322

    Article  PubMed  CAS  Google Scholar 

  32. Mohan B., Priyanka, Singh G., Chauhan A., Pombeiro A. J. L., Ren P., J. Hazard. Mater., 2023, 453, 131324

    Article  PubMed  CAS  Google Scholar 

  33. Jia C., He T., Wang G.-M., Coord. Chem. Rev., 2023, 476, 214930

    Article  CAS  Google Scholar 

  34. Xian T., Meng Q., Gao F., Hu M., Wang X., Coord. Chem. Rev., 2023, 474, 214866

    Article  CAS  Google Scholar 

  35. Liu X.-Y., Lustig W. P., Li J., ACS Energy Lett., 2020, 5, 2671

    Article  CAS  Google Scholar 

  36. Lustig W. P., Mukherjee S., Rudd N. D., Desai A. V., Li J., Ghosh S. K., Chem. Soc. Rev., 2017, 46, 3242

    Article  PubMed  CAS  Google Scholar 

  37. Wei Z., Gu Z. Y., Arvapally R. K., Chen Y. P., McDougald R. N., Jr., Ivy J. F., Yakovenko A. A., Feng D., Omary M. A., Zhou H. C., J. Am. Chem. Soc., 2014, 136, 8269

    Article  PubMed  CAS  Google Scholar 

  38. Sun Q., Qin L., Lai C., Liu S., Chen W., Xu F., Ma D., Li Y., Qian S., Chen Z., Chen W., Ye H., J. Hazard. Mater., 2023, 447, 130848

    Article  PubMed  CAS  Google Scholar 

  39. Liu W., Huang X., Xu C., Chen C., Yang L., Dou W., Chen W., Yang H., Liu W., Chem. Eur. J., 2016, 22, 18769

    Article  PubMed  CAS  Google Scholar 

  40. Goswami R., Mandal S. C., Seal N., Pathak B., Neogi S., J. Mater. Chem. A, 2019, 7, 19471

    Article  CAS  Google Scholar 

  41. Goswami R., Das S., Seal N., Pathak B., Neogi S., ACS Appl. Mater. Interfaces, 2021, 13, 34012

    Article  PubMed  CAS  Google Scholar 

  42. Afshariazar F., Morsali A., J. Mater. Chem. C, 2021, 9, 12849

    Article  CAS  Google Scholar 

  43. Bhattacharjee S., Bera S., Das R., Chakraborty D., Basu A., Banerjee P., Ghosh S., Bhaumik A., ACS Appl. Mater. Interfaces, 2022, 14, 20907

    Article  PubMed  CAS  Google Scholar 

  44. Zhang X., Luo X., Zhang N., Wu J., Huang Y.-Q., Inorg. Chem. Front., 2017, 4, 1888

    Article  CAS  Google Scholar 

  45. He H., Song Y., Sun F., Bian Z., Gao L., Zhu G., J. Mater. Chem. A, 2015, 3, 16598

    Article  CAS  Google Scholar 

  46. Hu Z., Deibert B. J., Li J., Chem. Soc. Rev., 2014, 43, 5815

    Article  PubMed  CAS  Google Scholar 

  47. Cui Y., Yue Y., Qian G., Chen B., Chem. Rev., 2012, 112, 1126

    Article  PubMed  CAS  Google Scholar 

  48. Nagarkar S. S., Desai A. V., Ghosh S. K., Chem. Commun., 2014, 50, 8915

    Article  CAS  Google Scholar 

  49. Wang B., Lv X.-L., Feng D., Xie L.-H., Zhang J., Li M., Xie Y., Li J.-R., Zhou H.-C., J. Am. Chem. Soc., 2016, 138, 6204

    Article  PubMed  CAS  Google Scholar 

  50. Wu D., Zhou K., Tian J., Liu C., Jiang F., Yuan D., Chen Q., Hong M., J. Mater. Chem. C, 2020, 8, 9828

    Article  CAS  Google Scholar 

  51. Gu Y.-N., Lu J.-F., Liu H., Zhao B., Zhou X.-H., Zhao Y.-Q., Sun Q.-Z., Zhang B.-G., Cryst. Growth Des., 2022, 22, 4874

    Article  CAS  Google Scholar 

  52. Chen L. L., Cheng Z. H., Peng X. Y., Qiu G. Q., Wang L., Anal. Methods, 2021, 14, 44

    Article  PubMed  CAS  Google Scholar 

  53. Kamal S., Khalid M., Khan M. S., Shahid M., Coord. Chem. Rev., 2023, 474, 214859

    Article  CAS  Google Scholar 

  54. Sun Q., Yang K., Ma W., Zhang L., Yuan G., Inorg. Chem. Front., 2020, 7, 4387

    Article  CAS  Google Scholar 

  55. Liu W., Qiao J., Gu J., Liu Y., Inorg. Chem., 2023, 62, 1272

    Article  PubMed  CAS  Google Scholar 

  56. Nagarkar S. S., Joarder B., Chaudhari A. K., Mukherjee S., Ghosh S. K., Angew. Chem. Int. Ed., 2013, 52, 2881

    Article  CAS  Google Scholar 

  57. Gu Y., Lin R., Luo X., Liu Y., Chem. Res. Chinese Universities, 2023, 39(2), 305

    Article  CAS  Google Scholar 

  58. Li W., Qiao J., Liu X., Liu Y., Chem. J. Chinese Universities, 2022, 43(1), 20210654

    Google Scholar 

  59. Li W., Liu X., LI G., Liu Y., Chem. Res. Chinese Universities, 2023, 39(6), 1005

    Article  CAS  Google Scholar 

  60. Qiao J., Liu X., Zhang L., Eubank J. F., Liu X., Liu Y., J. Am. Chem. Soc., 2022, 144, 17054

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22171100, 22288101) and the “111” Project of China (No. B17020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Hua or Yunling Liu.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Li, W., Li, G. et al. Two Indium(III)-based Fluorescent Metal-Organic Frameworks for Highly Sensing Fe3+, 2,4-DNP, and TNP. Chem. Res. Chin. Univ. 40, 119–126 (2024). https://doi.org/10.1007/s40242-023-3228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3228-5

Keywords

Navigation