Skip to main content
Log in

A General Approach for Synthesis of Circularly Assembled Supramolecular Polymers by Means of Region-confined Amphiphilic Supramolecular Polymerization

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Topological supramolecular polymers are responsible for design of innovative materials with unique physical properties but remain a challenging task to prepare by means of supramolecular polymerization. In this contribution, we present a novel method of region-confined amphiphilic supramolecular polymerization (RASP) in a controllable two-step self-organization pathway, which was certified by a new type of pyridine-oxadiazole alternating 48-membered macrocycles with structurally regional distribution of distinct self-assembling groups that can self-organize into circular supramolecular architectures. Meanwhile, water molecule plays a crucial role in RASP, and the water content in nonpolar solvent chloroform is sensitive to trigger controllable amphiphilic self-organization. Moreover, differing from the traditional rodlike micelles formed by self-assembly of linearly amphiphilic molecules, this approach of RASP exclusively gives rise to the formation of circularly assembled supramolecular polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang L., Tan X., Wang Z., Zhang X., Chem. Rev., 2015, 115, 7196

    Article  CAS  PubMed  Google Scholar 

  2. Clemons T. D., Stupp S. I., Prog. Polym. Sci., 2020, 111, 101310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo D. S., Liu Y., Chem. Soc. Rev., 2012, 41, 5907

    Article  CAS  PubMed  Google Scholar 

  4. Hashim P. K., Bergueiro J., Meijer E. W., Aida T., Prog. Polym. Sci., 2020, 105, 101250

    Article  CAS  Google Scholar 

  5. Qin B., Yin Z., Tang X., Zhang S., Wu Y., Xu J.-F., Zhang X., Prog. Polym. Sci., 2020, 100, 101167

    Article  CAS  Google Scholar 

  6. Yagai S., Kitamoto Y., Datta S., Adhikari B., Acc. Chem. Res., 2019, 52, 1325

    Article  CAS  PubMed  Google Scholar 

  7. Fenniri H., Packiarajan M., Vidale K. L., Sherman D. M., Hallenga K., Wood K. V., Stowell J. G., J. Am. Chem. Soc., 2001, 123, 3854

    Article  CAS  PubMed  Google Scholar 

  8. Percec V., Dulcey A. E., Balagurusamy V. S. K., Miura Y., Smidrkal J., Peterca M., Nummelin S., Edlund U., Hudson S. D., Heiney P. A., Duan H., Magonov S. N., Vinogradov S. A., Nature, 2004, 430, 764

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu T., Masuda M., Minamikawa H., Chem. Rev., 2005, 105, 1401

    Article  CAS  PubMed  Google Scholar 

  10. Huang Z., Kang S. K., Banno M., Yamaguchi T., Lee D., Seok C., Yashima E., Lee M., Science, 2012, 337, 1521

    Article  CAS  PubMed  Google Scholar 

  11. Fukino T., Joo H., Hisada Y., Obana M., Yamagishi H., Hikima T., Takata M., Fujita N., Aida T., Science, 2014, 344, 499

    Article  CAS  PubMed  Google Scholar 

  12. Beingessner R. L., Fan Y., Fenniri H., RSC Adv., 2016, 6, 75820

    Article  CAS  Google Scholar 

  13. Yashima E., Ousaka N., Taura D., Shimomura K., Ikai T., Maeda K., Chem. Rev., 2016, 116, 13752

    Article  CAS  PubMed  Google Scholar 

  14. Ghadiri M. R., Granja J. R., Milligan R. A., Mcree D. E., Khazanovich N., Nature, 1993, 366, 324

    Article  CAS  PubMed  Google Scholar 

  15. Kim Y., Kang J., Shen B., Wang Y., He Y., Lee M., Nat. Commun., 2015, 6, 8650

    Article  CAS  PubMed  Google Scholar 

  16. Hirschberg J. H. K. K., Brunsveld L., Ramzi A., Vekemans J. A. J. M., Sijbesma R. P., Meijer E. W., Nature, 2000, 407, 167

    Article  CAS  PubMed  Google Scholar 

  17. Zhang C., Deng X., Wang C., Bao C., Yang B., Zhang H., Qi S., Dong Z., Chem. Sci., 2019, 10, 8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suzuki A., Aratsu K., Datta S., Shimizu N., Takagi H., Haruki R., Adachi S. I., Hollamby M., Silly F., Yagai S., J. Am. Chem. Soc., 2019, 141, 13196

    Article  CAS  PubMed  Google Scholar 

  19. Kim J. K., Lee E., Huang Z. G., Lee M., J. Am. Chem. Soc., 2006, 128, 14022

    Article  CAS  PubMed  Google Scholar 

  20. Shen B., Zhu Y., Kim Y., Zhou X., Sun H., Lu Z., Lee M., Nat. Commun., 2019, 10, 1080

    Article  PubMed  PubMed Central  Google Scholar 

  21. Datta S., Kato Y., Higashiharaguchi S., Aratsu K., Isobe A., Saito T., Prabhu D. D., Kitamoto Y., Hollamby M. J., Smith A. J., Dalgliesh R., Mahmoudi N., Pesce L., Perego C., Pavan G. M., Yagai S., Nature, 2020, 583, 400

    Article  CAS  PubMed  Google Scholar 

  22. De Greef T. F., Smulders M. M., Wolffs M., Schenning A. P., Sijbesma R. P., Meijer E. W., Chem. Rev., 2009, 109, 5687

    Article  CAS  PubMed  Google Scholar 

  23. Korevaar P. A., George S. J., Markvoort A. J., Smulders M. M., Hilbers P. A., Schenning A. P., De Greef T. F., Meijer E. W., Nature, 2012, 481, 492

    Article  CAS  PubMed  Google Scholar 

  24. Ghadiri M. R., Granja J. R., Buehler L. K., Nature, 1994, 369, 301

    Article  CAS  PubMed  Google Scholar 

  25. Kim Y., Li, H., He Y., Chen X., Ma X., Lee M., Nat. Nanotechnol., 2017, 12, 551

    Article  CAS  PubMed  Google Scholar 

  26. Zhang K., Zha Y., Peng B., Chen Y., Tew G. N., J. Am. Chem. Soc., 2013, 135, 15994

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J., Dong Z., Lei S., Cao L., Yang B., Li W., Zhang Y., Liu J., Shen J., Angew. Chem. Int. Ed., 2015, 54, 3097

    Article  CAS  Google Scholar 

  28. Van Zee N. J., Adelizzi B., Mabesoone M. F. J., Meng X., Aloi A., Zha R. H., Lutz M., Filot I. A. W., Palmans A. R. A., Meijer E. W., Nature, 2018, 558, 100

    Article  CAS  PubMed  Google Scholar 

  29. Ogasawara M., Lin X., Kurata H., Ouchi H., Yamauchi M., Ohba T., Kajitani T., Fukushima T., Numata M., Nogami R., Adhikari B., Yagai S., Mater. Chem. Front., 2018, 2, 171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.92156012, 22071078) and the Program for Jilin University Science and Technology Innovative Research Team(JLUSTIRT), China(No.2019TD-36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyuan Dong.

Ethics declarations

DONG Zeyuan is a youth executive editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Supporting Information

40242_2023_3153_MOESM1_ESM.pdf

A General Approach for Synthesis of Circularly Assembled Supramolecular Polymers by means of Region-Confined Amphiphilic Supramolecular Polymerization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, C., Min, J. et al. A General Approach for Synthesis of Circularly Assembled Supramolecular Polymers by Means of Region-confined Amphiphilic Supramolecular Polymerization. Chem. Res. Chin. Univ. 39, 736–740 (2023). https://doi.org/10.1007/s40242-023-3153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3153-7

Keywords

Navigation