Skip to main content
Log in

Hollow Multishelled Structural Li-rich Cathode with Al Doping Enabling Capacity and Voltage Stabled Li-ion Batteries

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Li-rich layered oxide cathode materials have drawn great attention due to their high specific capacity and relatively low cost. However, their implementation is hindered by capacity and discharge voltage decay as well as poor rate performance. Herein, by combining the concepts of geometrical and atomic structure design, hollow multishelled structural Li-rich cathode material doped with aluminum element(Li-rich HoMS-Al) is developed to solve the above challenges. Li-rich HoMS-Al is synthesized through a facile sequential templating approach with the shell number, element molar ratio and Al doping amount accurately controlled. HoMS can effectively buffer the stress/strain during cycling, as well as shorten the ion and electron diffusion path, while Al doping can inhibit the phase transition of the material and reduce the surface oxygen precipitation. As a result, it achieved a high specific capacity, stable voltage and capacity during cycling, exhibiting an initial discharge specific capacity up to 300.6 mA·h·g−1 at 0.1 C(1 C=300 mA/g) and maintaining 246.3 mA·h·g−1 after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park G.-T., Namkoong B., Kim S.-B., Liu J., Yoon C. S., Sun Y.-K., Nat Energy, 2022, 7, 946

    CAS  Google Scholar 

  2. Yang S., Ai F., Li Z., Zhao G., Bi Y., Chem. Res. Chinese Universities, 2021, 38(2), 603

    Google Scholar 

  3. Bi Y. J., Tao J., Wu Y., Li L., Xu Y., Hu E., Wu B., Hu J., Wang C., Zhang J.-G., Qi Y., Xiao J., Science, 2020, 370, 1313

    CAS  PubMed  Google Scholar 

  4. Hou W., Ou Y., Liu K., Chem. Res. Chinese Universities, 2022, 38(3), 735

    Google Scholar 

  5. Chen W., Xia H., Guo K., Jin W., Du Y., Yan W., Qu G., Zhang J., Chem. Res. Chinese Universities, 2022, 38(5), 1232

    CAS  Google Scholar 

  6. Yin W., Grimaud A., Rousse G., Abakumov A. M., Senyshyn A., Zhang L., Trabesinger S., Iadecola A., Foix D., Giaume D., Tarascon J M., Nat. Commun., 2020, 11(1), 1252

    CAS  PubMed  PubMed Central  Google Scholar 

  7. House R. A., Maitra U., Perez-Osorio M. A., Lozano J. G., Jin L., Somerville J. W., Duda L. C., Nag A., Walters A., Zhou K. J., Roberts M. R., Bruce P. G., Nature, 2020, 577(7791), 502

    CAS  PubMed  Google Scholar 

  8. Li Q., Yao Z., Lee E., Xu Y., Thackeray M. M., Wolverton C., Dravid V. P., Wu J., Nat. Commun., 2019, 10(1), 1692

    PubMed  PubMed Central  Google Scholar 

  9. Assat G., Tarascon J. M., Nat. Energy, 2018, 3(5), 373

    CAS  Google Scholar 

  10. Seo D. H., Lee J., Urban A., Malik R., Kang S., Ceder G., Nat. Chem., 2016, 8(7), 692

    CAS  PubMed  Google Scholar 

  11. Ma Q., Chen Z., Zhong S., Meng J., Lai F., Li Z., Cheng C., Zhang L., Liu T., Nano Energy, 2021, 81, 105622

    CAS  Google Scholar 

  12. Li Q., Li G., Fu C., Luo D., Fan J., Li L., ACS Appl. Mater. Interfaces, 2014, 6(13), 10330

    CAS  PubMed  Google Scholar 

  13. Choi A., Lim J., Kim H. J., Jung S. C., Lim H. W., Kim H., Kwon M. S., Han Y. K., Oh S. M., Lee K. T., Adv. Energy Mater., 2018, 8(11), 1702514

    Google Scholar 

  14. Wang E., Xiao D., Wu T., Liu X., Zhou Y., Wang B., Lin T., Zhang X., Yu H., Adv. Funct. Mater., 2022, 1616, 2201744

    Google Scholar 

  15. Luo D., Ding X., Hao X., Xie H., Cui J., Liu P., Yang X., Zhang Z., Guo J., Sun S., Lin Z., ACS Energy Lett., 2021, 6(8), 2755

    CAS  Google Scholar 

  16. Li Z., Li Y., Zhang M., Yin Z W., Yin L., Xu S., Zuo C., Qi R., Xue H., Hu J., Cao B., Chu M., Zhao W., Ren Y., Xie L., Ren G., Pan F., Adv. Energy Mater., 2021, 11(37), 2101962

    CAS  Google Scholar 

  17. Wang T., Zhang C., Li S., Shen X., Zhou L., Huang Q., Liang C., Wang Z., Wang X., Wei W., ACS Appl. Mater. Interfaces, 2021, 13(10), 12159

    CAS  PubMed  Google Scholar 

  18. Yan H., Li B., Yu Z., Chu W., Xia D., J. Phys. Chem. C, 2017, 121(13), 7155

    CAS  Google Scholar 

  19. Wang M. J., Yu F. D., Sun G., Wang J., Zhou J. G., Gu D. M., Wang Z. B., J. Mater. Chem. A, 2019, 7(14), 8302

    CAS  Google Scholar 

  20. Liu J., Wang S., Ding Z., Zhou R., Xia Q., Zhang J., Chen L., Wei W., Wang P., ACS Appl. Mater. Interfaces, 2016, 8(28), 18008

    CAS  PubMed  Google Scholar 

  21. Wang P., Zhang Z., Song N., An X., Liu J., Feng J., Xi B., Xiong S., CCS Chem., 2023, 5(2), 397

    Google Scholar 

  22. Zhao X. Y., Lu Y., Qian Z F., Wang R. H., Guo Z. P., Ecomat, 2020, 2(3), e12038

    CAS  Google Scholar 

  23. Shen L., Song Y. W., Wang J., Zhao C. X., Bi C. X., Sun S. Y., Zhang X. Q., Li B. Q., Zhang Q., Small Struct., 2022, 7, 2200205

    Google Scholar 

  24. Wang W., Zhu X., Fu L., CCS Chem., 2021, 3(1), 686

    CAS  Google Scholar 

  25. Wang Z. S., Wang H. P., Qi S. A., Wu D. X., Huang J. D., Li X., Wang C. Y., Ma J. M., Ecomat, 2022, 4(2), e12200

    CAS  Google Scholar 

  26. Wang J., Cui Y., Wang D., Adv. Mater., 2019, 31(38), e1801993

    PubMed  Google Scholar 

  27. Wang J., Cui Y., Wang D., Nanoscale Horiz., 2020, 5(9), 1287

    CAS  PubMed  Google Scholar 

  28. Wang J., Tang H., Ren H., Yu R., Qi J., Mao D., Zhao H., Wang D., Adv. Sci., 2014, 1(1), 1400011

    Google Scholar 

  29. Wang L., Wan J., Wang J., Wang D., Small Struct., 2020, 2(1), 2000041

    Google Scholar 

  30. Li B., Bi R., Yang M., Gao W., Wang J., Appl. Surf. Sci., 2022, 56(3), 586

    Google Scholar 

  31. Ma Y., Bi R., Yang M., Wei P., Qi J., Wang J., Yu R., Wang D., J. Nanopart. Res., 2023, 25(1), 14

    CAS  Google Scholar 

  32. Wang J., Wang Z., Mao D., Wang D., Sci. China Chem., 2021, 65(1), 7

    Google Scholar 

  33. Zhao J., Yang M., Yang N., Wang J., Wang D., Chem. Res. Chinese Universities, 2020, 36(3), 313

    CAS  Google Scholar 

  34. Zhao J. L., Wang J. Y., Bi R. Y., Yang M., Wan J. W., Jiang H. Y., Gu L., Wang D., Angew. Chem. Int. Ed., 2021, 60(49), 25719

    CAS  Google Scholar 

  35. Wei Y., Wan J., Wang J., Zhang X., Yu R., Yang N., Wang D., Small, 2021, 17(22), e2005345

    PubMed  Google Scholar 

  36. Wang J., Wan J., Yang N., Li Q., Wang D., Nat. Rev. Chem., 2020, 4(3), 159

    CAS  PubMed  Google Scholar 

  37. Bi R., Mao D., Wang J., Yu R., Wang D., Acta Chim. Sinica, 2020, 78(11), 1200

    CAS  Google Scholar 

  38. Wang J., Tang H., Wang H., Yu R., Wang D., Mater. Chem. Front., 2017, 1(3), 414

    CAS  Google Scholar 

  39. Wang J., Tang H., Ren H., Yu R., Qi J., Mao D., Zhao H., Wang D., Adv. Sci., 2014, 1(1), 1400011

    Google Scholar 

  40. Wei Y., Wang J., Yu R., Wan J., Wang D., Angew. Chem. Int. Ed., 2019, 58(5), 1422

    CAS  Google Scholar 

  41. Wei Y., Yang N., Huang K., Wan J., You F., Yu R., Feng S., Wang D., Adv. Mater., 2020, 32(44), e2002556

    PubMed  Google Scholar 

  42. Li B., Wang J., Bi R., Yang N., Wan J., Jiang H., Gu L., Du J., Cao A., Gao W., Wang D., Adv. Mater., 2022, e2200206

  43. Wang J. Y., Yang M., Wang D., Chin. J. Chem., 2022, 40, 1190

    Google Scholar 

  44. Nayak P. K., Ginblat J., Levi M., Levi E., Kim S., Choi J. W., Aurbach D., Adv. Energy Mater., 2016, 6, 1502398

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos.2021YFC2902503, 2022YFA1504101), the National Natural Science Foundation of China(Nos.21820102002, 21931012, 52261160573, 51972305), the Cooperation Fund of the Institute of Clean Energy Innovation, Chinese Academy of Sciences(No.DNL202020), the Zhongke-Yuneng Joint R&D Center Program, China(No.ZKYN2022008), and the IPE Project for Frontier Basic Research, China(No.QYJC-2022-008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Yang, Jiangyan Wang or Dan Wang.

Additional information

Conflicts of Interest

WANG Dan is an editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yang, M., Wang, J. et al. Hollow Multishelled Structural Li-rich Cathode with Al Doping Enabling Capacity and Voltage Stabled Li-ion Batteries. Chem. Res. Chin. Univ. 39, 630–635 (2023). https://doi.org/10.1007/s40242-023-3128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3128-8

Keywords

Navigation