Skip to main content
Log in

Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The geometries and electronic structures of a series of electron donor-acceptor radical molecules have been studied theoretically. The computational results show that the introduction of substituents with strong electron donating ability into tri-(2,4,6-trichlorophenyl) methyl(TTM) radicals enables the radical molecules to form the non-Aufbau electronic structure. The difficulty of forming the non-Aufbau electronic structure decreases with the enhancement of the electron donating ability of the substituent, but the expansion of the molecular conjugated system is not conducive to the formation. The hybridization of different fragments in molecular orbitals results in the disproportionation of orbital energy level and forms a staggered energy level structure. The electronic structure of radical molecules can be adjusted by substituents and molecular skeleton profoundly, which is a very effective means for molecular design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee S. M., Kwon J. H., Kwon S., Choi K. C., IEEE T. Electron. Dev., 2017, 64, 1922

    Article  CAS  Google Scholar 

  2. Xu R. P., Li Y. Q., Tang J. X., J. Mater. Chem. C, 2016, 4, 9116

    Article  CAS  Google Scholar 

  3. Bai F.-Q., Zhou X., Xia B.-H., Liu T., Zhang J.-P., Zhang H.-X., J. Orgamomet. Chem., 2009, 694, 1848

    Article  CAS  Google Scholar 

  4. Kim E., Park J., Jun M., Shin H., Baek J., Kim T., Kim S., Lee J., Ahn H., Sun J., Sci. Adv., 2022, 8, eabq1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiang H., Wang R., Chen, J., Li F., Zeng H., Light Sci. Appl., 2021, 10, Article number: 206

    Article  Google Scholar 

  6. Yang J. G., Song X. F., Cheng G., Wu S. P., Feng X. Y., Cui G. L., To W. P., Chang X. Y., Chen Y., Che C. M., ACS Appl. Mater. Inter., 2022, 14, 13539

    Article  CAS  Google Scholar 

  7. Xiao S., Qiao X. F., Lin C. W., Chen L. J., Guo R. D., Lu P., Wang L., Ma D. G., Adv. Opt. Mater., 2022, 10, 2102333

    Article  CAS  Google Scholar 

  8. Han M. M., Zhu Z., Ouyang M. T., Liu Y., Shu X. W., Adv. Funct. Mater., 2021, 31, 2104044

    Article  CAS  Google Scholar 

  9. Zhong Z. T., Zhu X. Y., Wang X. H., Zheng Y., Geng S. N., Zhou Z. K., Feng X. J., Zhao Z. J., Lu H., Adv. Funct. Mater., 2022, 2112969

    Google Scholar 

  10. Zhuo M. P., Wang X. D., Liao L. S., Small Science, 2022, 2, 2200029}

    Article  CAS  Google Scholar 

  11. Peng Q. M., Obolda A., Zhang M., Li F., Angew. Chem. Int. Ed., 2015, 127, 7197

    Article  Google Scholar 

  12. Ai X., Evans E. W., Dong S. Z., Gillett A. J., Guo H. Q., Chen Y. X., Hele T. J., Friend R. H., Li F., Nature, 2018, 563, 536

    Article  CAS  PubMed  Google Scholar 

  13. Cui Z. Y., Abdurahman A., Ai X., Li F., CCS Chem., 2020, 2, 1129

    Article  CAS  Google Scholar 

  14. Forrester A. R., Hay M. K., Thomson R. H., Organic Chemistry of Stable Free Radicals, Academic Press, New York, 1968

    Google Scholar 

  15. Hicks R. G., Org. Biomol. Chem., 2007, 5, 1321

    Article  CAS  PubMed  Google Scholar 

  16. Hicks R., Stable Radicals: Fundamentals and Applied Aspects of Oddelectron Compounds, John Wiley & Sons, Hoboken, 2011

    Google Scholar 

  17. Kato K., Osuka A., Angew. Chem. Int. Ed., 2019, 131, 9074

    Article  Google Scholar 

  18. Ballester M., Riera-Figueras J., Rodríguez-Siurana A., Tetrahedron. Lett., 1970, 11, 3615

    Article  Google Scholar 

  19. Armet O., Veciana J., Rovira C., Riera J., Castaner J., Molins E., Rius J., Miravitlles C., Olivella S., Brichfeus J., J. Phys. Chem., 1987, 91, 5608

    Article  CAS  Google Scholar 

  20. Hisamune Y., Nishimura K., Isakari K., Ishida M., Mori S., Karasawa S., Kato T., Lee S., Kim D., Furuta H., Angew. Chem. Int. Ed., 2015, 54, 7323

    Article  CAS  Google Scholar 

  21. Guo H. Q., Peng Q. M., Chen X. K., Gu Q. Y., Dong S. Z., Evans E. W., Gillett A. J., Ai X., Zhang M., Credgington D., Coropceanu V., Friend R. H., Brédas J. L., Li F., Nat. Mater., 2019, 18, 977

    Article  CAS  PubMed  Google Scholar 

  22. Yu S. Q., Du Y., Niu X. H., Li G. M., Zhu D., Yu Q., Zou G. Z., Ju H. X., Nat. Commun., 2022, 13, 7302

    Article  PubMed  PubMed Central  Google Scholar 

  23. Duan C. B., Han C. M., Du R. M., Wei Y., Xu H., Adv. Opt. Mater., 2018, 6, 1800437

    Article  Google Scholar 

  24. Shaw M. H., Twilton J., Macmillan D. W. C., J. Org. Chem., 2016, 81(16), 6898

    Article  Google Scholar 

  25. Zhao Y., Truhlar D. G., Theor. Chem. Acc., 2008, 120, 215

    Article  CAS  Google Scholar 

  26. Schaefer A., Horn H., Ahlrichs R., J. Chem. Phys., 1992, 97, 2571

    Article  CAS  Google Scholar 

  27. Schaefer A., Huber C., Ahlrichs R., J. Chem. Phys., 1994, 100, 5829

    Article  CAS  Google Scholar 

  28. Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shirley W. A., Mantzaris J., J. Chem. Phys., 1988, 89, 2193

    Article  CAS  Google Scholar 

  29. Petersson G. A., Al-Laham M. A., J. Chem. Phys., 1991, 94, 6081

    Article  CAS  Google Scholar 

  30. Marenich A. V., Cramer C. J., Truhlar D. G., J. Phys. Chem. B, 2009, 113, 6378

    Article  CAS  PubMed  Google Scholar 

  31. Lu T., Chen F., J. Comput. Chem., 2012, 33, 580

    Article  PubMed  Google Scholar 

  32. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Gaussian, Inc., Wallingford CT, 2016

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘14th Five-Year’ Science and Technology Project of the Education Department of Jilin Province, China(No. JJKH20220966KJ), the Open Fund of the State Key Laboratory of Luminescent Materials and Devices of South China University of Technology, China(No.2022-skllmd-09), and the LIXIN Outstanding Young Scholar Training Program of Jilin University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyue Li or Fuquan Bai.

Electronic supplementary material

40242_2023_2364_MOESM1_ESM.pdf

Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Feng, L., Li, G. et al. Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals. Chem. Res. Chin. Univ. 39, 202–207 (2023). https://doi.org/10.1007/s40242-023-2364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2364-2

Keywords

Navigation