Skip to main content
Log in

Electronic Characteristics of Perylene Diimide Anion Radical and Dianion Films by Quantitative Doping

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Due to their unique physicochemical properties, the anion radical and dianion of perylene diimide derivatives(PDIs) recently attracted significant attention for organic semiconductors. However, the impact of packing structure and the radical content for carrier transport in the solid state still need to be determined. Bringing the electron-withdrawing groups is an effective strategy for enabling π−π stacking distance. Here, bay-tetrachloro-substituted PDI(B-4Cl-PDI) anion radical and dianion films were fabricated quantitatively doped with N2H4·H2O. The radical contents were quantitatively calculated by absorption spectra in different doping ratios. The X-ray powder diffraction patterns showed that the anion radical presented a crystalline structure, and dianion aggregates exhibited an amorphous structure. With precise manipulation of the radical content, the anion radical aggregates and dianion aggregates showed the maximum electrical conductivity value of 0.024 and 0.0018 S/cm, respectively. The experiment results show that doping level and aggregate structure play a crucial role in electronic transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones B. A., Facchetti A., Wasielewski M. R., Marks T. J., J. Am. Chem. Soc., 2007, 129, 15259

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt R., Oh J. H., Sun Y.-S., Deppisch M., Krause A.-M., Radacki K., Braunschweig H., Konemann M., Erk P., Bao Z., Wurthner F., J. Am. Chem. Soc., 2009, 131, 6215

    Article  CAS  PubMed  Google Scholar 

  3. Wang H., Yuan S., Ma D., Huang X., Meng F., Zhang X., Adv. Energy Mater., 2014, 4, 1301651

    Article  Google Scholar 

  4. Warczak M., Gryszel M., Jakesova M., Derek V., Glowacki E. D., Chem. Commun., 2018, 54, 1960

    Article  CAS  Google Scholar 

  5. Kozma E., Mróz W., Villafiorita-Monteleone F., Galeotti F., Andicsová-Eckstein A., Catellani M., Botta C., RSC Adv., 2016, 6, 61175

    Article  CAS  Google Scholar 

  6. Zhang W., Zhong S., Nian L., Chen Y., Xie Z., Liu L., Hanif M., Chen W., Ma Y., RSC Adv., 2015, 5, 39973

    Article  CAS  Google Scholar 

  7. Wang Z., Zheng N., Zhang W., Yan H., Xie Z., Ma Y., Huang F., Cao Y., Adv. Energy Mater., 2017, 7, 1700232

    Article  Google Scholar 

  8. Russ B., Robb M. J., Brunetti F. G., Miller P. L., Perry E. E., Patel S. N., Ho V., Chang W. B., Urban J. J., Chabinyc M. L., Hawker C. J., Segalman R. A., Adv. Mater., 2014, 26, 3473

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Q., Zhang J., Mao Z., Yao Y., Zhao D., Jia Y., Hu D., Ma Y., Adv. Mater., 2022, 34, 2108103

    Article  CAS  Google Scholar 

  10. Chen Z. X., Li Y., Huang F., Chem, 2021, 7, 288

    Article  CAS  Google Scholar 

  11. Rostro L., Baradwaj A. G., Boudouris B. W., ACS Appl. Mater. Interfaces, 2013, 5, 9896

    Article  CAS  PubMed  Google Scholar 

  12. Rostro L., Wong S. H., Boudouris B. W., Macromolecules, 2014, 47, 3713

    Article  CAS  Google Scholar 

  13. Joo Y., Agarkar V., Sung S. H., Savoie B. M., Boudouris B. W., Science, 2018, 359, 1391

    Article  CAS  PubMed  Google Scholar 

  14. Kwon T., Koo J. Y., Choi H. C., Angew. Chem. Int. Ed., 2020, 59, 16436

    Article  CAS  Google Scholar 

  15. Zhao D., Jiang Q., Jia Y., Zhou J., Zheng N., Hu D., Ma Y., Mater. Today Energy, 2021, 21, 100710

    Article  CAS  Google Scholar 

  16. Chen T. A., Rieke R. D., Synth. Met., 1993, 60, 175

    Article  CAS  Google Scholar 

  17. Ajayaghosh A., Chem. Soc. Rev., 2003, 32, 181

    Article  CAS  PubMed  Google Scholar 

  18. Tam T. L. D., Ng C. K., Lim S. L., Yildirim E., Ko J., Leong W. L., Yang S., Xu J., Chem. Mater., 2019, 31, 8543

    Article  Google Scholar 

  19. Huang L., Eedugurala N., Benasco A., Zhang S., Mayer K. S., Adams D. J., Fowler B., Lockart M. M., Saghayezhian M., Tahir H., King E. R., Morgan S., Bowman M. K., Gu X., Azoulay J. D., Adv. Funct. Mater., 2020, 1909805

  20. Yuan D., Guo Y., Zeng Y., Fan Q., Wang J., Yi Y., Zhu X., Angew. Chem. Int. Ed., 2019, 58, 4958

    Article  CAS  Google Scholar 

  21. Yang K., Zhang X., Harbuzaru A., Wang L., Wang Y., Koh C., Guo H., Shi Y., Chen J., Sun H., Feng K., Delgado R. M. C., Woo H. Y., Ortiz R. P., Guo X., J. Am. Chem. Soc., 2020, 142, 4329

    Article  CAS  PubMed  Google Scholar 

  22. Lutkenhaus J., Science, 2018, 359, 1334

    Article  CAS  PubMed  Google Scholar 

  23. Cardona C. M., Li W., Kaifer A. E., Stockdale D., Bazan G. C., Adv. Mater., 2011, 23, 2367

    Article  CAS  PubMed  Google Scholar 

  24. Sworakowski J., Lipiński J., Janus K., Org. Electron., 2016, 33, 300

    Article  CAS  Google Scholar 

  25. Renner R., Stolte M., Heitmüller J., Brixner T., Lambert C., Würthner F., Mater. Horiz., 2022, 9, 350

    Article  CAS  PubMed  Google Scholar 

  26. Seifert S., Schmidt D., Wurthner F., Chem. Sci., 2015, 6, 1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dyson F. J., Phys. Rev., 1955, 98, 349

    Article  CAS  Google Scholar 

  28. Guy S. C., Edmonds R. N., Edwards P. P., J. Chem. Soc., Faraday Trans. 2, 1985, 81, 937

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No.2020YFA0714604), the National Natural Science Foundation of China (Nos.U20A6002, 91833304, 51521002 22005107, 52203221), the Basic and Applied Basic Research Major Program of Guangdong Province, China(No. 2019B030302007), the Research and Development Funds for Science and Technology Program of Guangzhou, China(No.202007020004), the Natural Science Foundation of Guangdong Province, China(Nos.2019B121205002, 2022A1515010063), the Fund of the Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, China(No.2019B030301003), and the Funding by Science and Technology Projects in Guangzhou, China (Nos.202102020401, 202102020561).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Jiang, Jiang Zhang or Yuguang Ma.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Jiang, Q., Wang, B. et al. Electronic Characteristics of Perylene Diimide Anion Radical and Dianion Films by Quantitative Doping. Chem. Res. Chin. Univ. 39, 187–191 (2023). https://doi.org/10.1007/s40242-023-2350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2350-8

Keywords

Navigation