Skip to main content
Log in

Stable Radical TEMPO Terminated Perylene Bisimide(PBI) Based Small Molecule as Cathode Interlayer for Efficient Organic Solar Cells

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

By combining stable radical tetramethylpiperidine nitrogen oxide(TEMPO) as end groups and perylene bisimide(PBI) as the core, a small molecular cathode interlayer(CIL) (PBI-TEMPO) was synthesized. Detailed physical-chemical characterizations indicate that PBI-TEMPO can form smooth film, owns low unoccupied molecular orbital(LUMO) level of −3.67 eV and can reduce the work function of silver electrode. When using PBI-TEMPO as CIL in non-fullerene organic solar cells(OSCs), the PM6:BTP-4Cl based OSCs delivered high power conversion efficiencies(PCEs) up to 17.37%, higher than those using commercial PDINO CIL with PCEs of 16.95%. Further device characterizations indicate that PBI-TEMPO can facilitate more efficient exciton dissociation and reduce charge recombination, resulting in enhanced current density and fill factor. Moreover, PBI-TEMPO displays higher thermal stability than PDINO in solution. When PBI-TEMPO and PDINO solution were heated at 150 °C for 2 h and then were used as CIL in solar cells, PBI-TEMPO-based OSCs provided a PCE of 15%, while PDINO-based OSCs only showed a PCE of 10%. These results demonstrate that incorporating TEMPO into conjugated materials is a useful strategy to create new organic semiconductors for application in OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu B., Xia D., Xiao C., Yang Z., Li W., Acta Phys.-Chim. Sin., 2021, 37, 2009056

    Google Scholar 

  2. Yan N., Zhao C., You S., Zhang Y., Li W., Chin. Chem. Lett., 2020, 31, 643

    Article  CAS  Google Scholar 

  3. Liu C., Xiao C., Xie C., Li W., Nano Energy, 2021, 89, 106399

    Article  CAS  Google Scholar 

  4. Park S., Heo S. W., Lee W., Inoue D., Jiang Z., Yu K., Jinno H., Hashizume D., Sekino M., Yokota T., Fukuda K., Tajima K., Someya T., Nature, 2018, 561, 516

    Article  CAS  PubMed  Google Scholar 

  5. Cao J., Yi L., Ding L., J. Semicond., 2022, 43, 030202

    Article  Google Scholar 

  6. Yuan J., Zhang Y., Zhou L., Zhang G., Yip H.-L., Lau T.-K., Lu X., Zhu C., Peng H., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y., Joule, 2019, 3, 1140

    Article  CAS  Google Scholar 

  7. Li C., Zhou J., Song J., Xu J., Zhang H., Zhang X., Guo J., Zhu L., Wei D., Han G., Min J., Zhang Y., Xie Z., Yi Y., Yan H., Gao F., Liu F., Sun Y., Nat. Energy, 2021, 6, 605

    Article  CAS  Google Scholar 

  8. Zhan L., Li S., Xia X., Li Y., Lu X., Zuo L., Shi M., Chen H., Adv. Mater., 2021, 33, e2007231

    Article  PubMed  Google Scholar 

  9. Li Y., Acc. Chem. Res., 2012, 45, 723

    Article  CAS  PubMed  Google Scholar 

  10. Zhang G., Lin F. R., Qi F., Heumuller T., Distler A., Egelhaaf H. J., Li N., Chow P. C. Y., Brabec C. J., Jen A. K., Yip H. L., Chem. Rev., 2022, 122, 14180

    Article  CAS  PubMed  Google Scholar 

  11. Cui M., Li D., Du X., Li N., Rong Q., Li N., Shui L., Zhou G., Wang X., Brabec C. J., Nian L., Adv. Mater., 2020, 32, e2002973

    Article  PubMed  Google Scholar 

  12. Zhao C., Zhang Z., Han F., Xia D., Xiao C., Fang J., Zhang Y., Wu B., You S., Wu Y., Li W., Angew. Chem. Int. Ed., 2021, 60, 8526

    Article  CAS  Google Scholar 

  13. Wu Z., Sun C., Dong S., Jiang X. F., Wu S., Wu H., Yip H. L., Huang F., Cao Y., J. Am. Chem. Soc., 2016, 138, 2004

    Article  CAS  PubMed  Google Scholar 

  14. Li G., Chang W.-H., Yang Y., Nat. Rev. Mater., 2017, 2, 17043

    Article  CAS  Google Scholar 

  15. Yan C., Barlow S., Wang Z., Yan H., Jen A. K. Y., Marder S. R., Zhan X., Nat. Rev. Mater., 2018, 3, 18003

    Article  CAS  Google Scholar 

  16. Song M., Hao H., Chen W., Gu F., Ba X., Chem. J. Chinese Universities, 2019, 40(7), 1527

    CAS  Google Scholar 

  17. He C., Pan Y., Ouyang Y., Shen Q., Gao Y., Yan K., Fang J., Chen Y., Ma C., Min J., Zhang C., Zuo L., Chen H., Energy Environ. Sci., 2022, 15, 2537

    Article  CAS  Google Scholar 

  18. Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Zhou Z., Zeng R., Zhu H., Chen C. C., MacKenzie R. C. I., Zou Y., Nelson J., Zhang Y., Sun Y., Liu F., Nat. Mater., 2022, 21, 656

    Article  CAS  PubMed  Google Scholar 

  19. Bi P., Zhang S., Chen Z., Xu Y., Cui Y., Zhang T., Ren J., Qin J., Hong L., Hao X., Hou J., Joule, 2021, 5, 2408

    Article  CAS  Google Scholar 

  20. Zheng Z., Wang J., Bi P., Ren J., Wang Y., Yang Y., Liu X., Zhang S., Hou J., Joule, 2022, 6, 171

    Article  CAS  Google Scholar 

  21. Liang Y., Zhang D., Wu Z., Jia T., Lüer L., Tang H., Hong L., Zhang J., Zhang K., Brabec C. J., Li N., Huang F., Nat. Energy, 2022, 7, 1180

    Article  CAS  Google Scholar 

  22. Baran D., Ashraf R. S., Hanifi D. A., Abdelsamie M., Gasparini N., Rohr J. A., Holliday S., Wadsworth A., Lockett S., Neophytou M., Emmott C. J., Nelson J., Brabec C. J., Amassian A., Salleo A., Kirchartz T., Durrant J. R., McCulloch I., Nat. Mater., 2017, 16, 363

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y., Liu B., Ma C.-Q., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z.-G., Bo Z., Sci. China Chem., 2021, 65, 224

    Article  Google Scholar 

  24. Sorrentino R., Kozma E., Luzzati S., Po R. C., Energy Environ. Sci., 2021, 14, 180

    Article  CAS  Google Scholar 

  25. Wurthner F., Saha-Moller C. R., Fimmel B., Ogi S., Leowanawat P., Schmidt D., Chem. Rev., 2016, 116, 962

    Article  PubMed  Google Scholar 

  26. Yao J., Qiu B., Zhang Z. G., Xue L., Wang R., Zhang C., Chen S., Zhou Q., Sun C., Yang C., Xiao M., Meng L., Li Y., Nat. Commun., 2020, 11, 2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Y., Zhang K., Yamauchi Y., Oyaizu K., Jia Z., Mater. Horiz., 2021, 8, 803

    Article  CAS  PubMed  Google Scholar 

  28. Joo Y., Agarkar V., Sung S. H., Savoie B. M., Boudouris B. W., Science, 2018, 359, 1391

    Article  CAS  PubMed  Google Scholar 

  29. Zhang M., Guo X., Ma W., Ade H., Hou J., Adv. Mater., 2015, 27, 4655

    Article  CAS  PubMed  Google Scholar 

  30. Cui Y., Yao H., Hong L., Zhang T., Tang Y., Lin B., Xian K., Gao B., An C., Bi P., Ma W., Hou J., Natl. Sci. Rev., 2020, 7(7), 1239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.92163128, 52073016, 52163018), the Open Project of State Key Laboratory of Organic-Inorganic Composites, China(No.oic-202201006) and the Fund of the Academy of Sciences of Jiangxi Province, China(Nos.2022YJC2017, 2021YSBG22034, 2021YSBG22033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Fang, Yonggang Wu or Weiwei Li.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xia, D., Xie, Q. et al. Stable Radical TEMPO Terminated Perylene Bisimide(PBI) Based Small Molecule as Cathode Interlayer for Efficient Organic Solar Cells. Chem. Res. Chin. Univ. 39, 213–218 (2023). https://doi.org/10.1007/s40242-023-2346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2346-4

Keywords

Navigation