Skip to main content
Log in

Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The oxygen reduction reaction in direct glycol fuel cells heavily relies on noble metal-based electrocatalysts. In this work, novel Pt group metal-free catalysts based on porous Fe-N-C materials are successfully synthesized as catalysts with high activity and durability for the cathode oxygen reduction reaction (ORR). Through the encapsulation of NH4SCN salt, the surface elements and pore structure of the catalyst are effectively changed, and the active sites of Fe effectively are increased. The half-wave potential of the best Fe-N-C catalyst was −0.02 V vs. Hg/HgO in an alkaline environment. The porous Fe-N-C catalyst possesses a large specific surface area(1158 m2/g) and shows good activity and tolerance to glycol. The direct glycol fuel cell with the Fe-N-C cathode achieved a maximum power density of 62.2 mW/cm2 with 4 mol/L KOH and 4 mol/L glycol solution at 25 °C and maintained discharge for more than 250 h at a 50 A/cm2 current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma Y., Fu Y., Jiang W., Wu Y., Liu C., Che G., Fang Q., Journal of Materials Chemistry A, 2022, 10, 10092

    Article  CAS  Google Scholar 

  2. Chong L., Wen J., Kubal J., Sen F. G., Zou J., Greeley J., Chan M., Barkholtz H., Ding W., Liu D. J., Science, 2018, 362(6420), 1276

    Article  CAS  PubMed  Google Scholar 

  3. Kang Z., Mo J., Yang G., Li Y., Talley D. A., Retterer S. T., Cullen D. A., Toops T. J., Brady M. P., Bender G., Pivovar B. S., Green J. B., Zhang F.-Y., Applied Energy, 2017, 206, 983

    Article  CAS  Google Scholar 

  4. Ou W., Qiu C., Su C., Chinese Journal of Catalysis, 2022, 43(4), 956

    Article  CAS  Google Scholar 

  5. Yao Y., Wang S., Li Z., Wu Y., Journal of Energy Chemistry, 2021, 63, 604

    Article  CAS  Google Scholar 

  6. Han Y., Wang Y., Xu R., Chen W., Zheng L., Han A., Zhu Y., Zhang J., Zhang H., Luo J., Chen C., Peng Q., Wang D., Li Y., Energy & Environmental Science, 2018, 11(9), 2348

    Article  CAS  Google Scholar 

  7. Gangadharan P. K., Pandikassala A., Kurungot S., ACS Appl Mater Interfaces, 2021, 13(7), 8147

    Article  CAS  PubMed  Google Scholar 

  8. Li X., Yang X., Liu L., Zhao H., Li Y., Zhu H., Chen Y., Guo S., Liu Y., Tan Q., Wu G., ACS Catalysis, 2021, 11(12), 7450

    Article  CAS  Google Scholar 

  9. Abbasi R., Setzler B. P., Lin S., Wang J., Zhao Y., Xu H., Pivovar B., Tian B., Chen X., Wu G., Yan Y., Adv. Mater., 2019, 31(31), e1805876

    Article  PubMed  Google Scholar 

  10. Thompson S. T., James B. D., Huya-Kouadio J. M., Houchins C., DeSantis D. A., Ahluwalia R., Wilson A. R., Kleen G., Papageorgopoulos D., Journal of Power Sources, 2018, 399(30), 304

    Article  CAS  Google Scholar 

  11. Zhao S.-N., Li J.-K., Wang R., Cai J., Zang S.-Q., Advanced Materials, 2022, 34(5), 2107291

    Article  CAS  Google Scholar 

  12. Zhao J., Fu C., Ye K., Liang Z., Jiang F., Shen S., Zhao X., Ma L., Shadike Z., Wang X., Zhang J., Jiang K., Nature Communications, 2022, 13(1), 685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang J., Wang B., Jin J., Yang S., Li G., Renewable and Sustainable Energy Reviews, 2022, 156, 111998

    Article  CAS  Google Scholar 

  14. Zhu B. M. Y., Xia C., Wang B., Kim J. S., Lund P., Li T., Energy Mater., 2021, (1), 100002

  15. Dai S., Hou Y., Onoue M., Zhang S., Gao W., Yan X., Graham G. W., Wu R., Pan X., Nano Lett., 2017, 17(8), 4683

    Article  CAS  PubMed  Google Scholar 

  16. Dai S., You Y., Zhang S., Cai W., Xu M., Xie L., Wu R., Graham G. W., Pan X., Nat. Commun., 2017, 8(1), 204

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang X., Yao K. X., Ye J. Y., Yuan Q., Zhao F., Li Y., Zhou Z., Advanced Functional Materials, 2021, 31(36), 2103671

    Article  CAS  Google Scholar 

  18. Raseruthe K. E., Matthews T., Gwebu S. S., Pillay K., Maxakato N. W., Materials Research Express, 2021, 8(1), 015017

    Article  CAS  Google Scholar 

  19. Wang Y., Wang D., Li Y., Adv. Mater., 2021, 33(34), e2008151

    Article  PubMed  Google Scholar 

  20. Kim J., Kim H., Lee W. J., Ruqia B., Baik H., Oh H. S., Paek S. M., Lim H. K., Choi C. H., Choi S. I., J. Am. Chem. Soc., 2019, 141(45), 18256

    Article  CAS  PubMed  Google Scholar 

  21. Liu R., Gong Z., Liu J., Dong J., Liao J., Liu H., Huang H., Liu J., Yan M., Huang K., Gong H., Zhu J., Cui C., Ye G., Fei H., Adv. Mater., 2021, 33(41), e2103533

    Article  PubMed  Google Scholar 

  22. Liu M., Xu Y., Liu S., Yin S., Liu M., Wang Z., Li X., Wang L., Wang H., Journal of Materials Chemistry A, 2021, 9(8), 5026

    Article  CAS  Google Scholar 

  23. Liu L., Corma A., Nature Catalysis, 2021, 4(6), 453

    Article  CAS  Google Scholar 

  24. Liu C., Shviro M., Gago A. S., Zaccarine S. F., Bender G., Gazdzicki P., Morawietz T., Biswas I., Rasinski M., Everwand A., Schierholz R., Pfeilsticker J., Müller M., Lopes P. P., Eichel R. A., Pivovar B., Pylypenko S., Friedrich K. A., Lehnert W., Carmo M., Advanced Energy Materials, 2021, 11(8), 2002926

    Article  CAS  Google Scholar 

  25. Kwon I. S., Kwak I. H., Ju S., Kang S., Han S., Park Y. C., Park J., Park J., ACS Nano, 2020, 14(9), 12184

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee A., Su W.-N., Pan C.-J., Basu S., Journal of Electroanalytical Chemistry, 2021, 882, 115006

    Article  CAS  Google Scholar 

  27. Cheng X., Yang J., Yan W., Han Y., Qu X., Yin S., Chen C., Ji R., Li Y., Li G., Li G., Jiang Y., Sun S., Energy & Environmental Science, 2021, 14(11), 5958

    Article  CAS  Google Scholar 

  28. Zhou K. L., Wang C., Wang Z., Han C. B., Zhang Q., Ke X., Liu J., Wang H., Energy & Environmental Science, 2020, 13(9), 3082

    Article  CAS  Google Scholar 

  29. Li J., Sougrati M. T., Zitolo A., Ablett J. M., Oğuz I. C., Mineva T., Matanovic I., Atanassov P., Huang Y., Zenyuk I., Di Cicco A., Kumar K., Dubau L., Maillard F., Dražić G., Jaouen F., Nature Catalysis, 2021, 4(1), 10

    Article  Google Scholar 

  30. Zhou M., Li H., Long A., Zhou B., Lu F., Zhang F., Zhan F., Zhang Z., Xie W., Zeng X., Yi D., Wang X., Advanced Energy Materials, 2021, 11(36), 2101789

    Article  CAS  Google Scholar 

  31. Wang Y., Liu B., Shen X., Arandiyan H., Zhao T., Li Y., Garbrecht M., Su Z., Han L., Tricoli A., Zhao C., Advanced Energy Materials, 2021, 11(16), 2003759

    Article  CAS  Google Scholar 

  32. Liu S., Qian T., Wang M., Ji H., Shen X., Wang C., Yan C., Nature Catalysis, 2021, 4(4), 322

    Article  CAS  Google Scholar 

  33. Li Y., Pillai H. S., Wang T., Hwang S., Zhao Y., Qiao Z., Mu Q., Karakalos S., Chen M., Yang J., Su D., Xin H., Yan Y., Wu G., Energy & Environmental Science, 2021, 14(3), 1449

    Article  CAS  Google Scholar 

  34. Palaniappan R., Botte G. G., The Journal of Physical Chemistry C, 2013, 117(34), 17429

    Article  CAS  Google Scholar 

  35. Gong K., Du F., Xia Z., Durstock M., Dai L., Science, 2009, 323(5915), 760

    Article  CAS  PubMed  Google Scholar 

  36. Pan Z., Huang B., An L., International Journal of Energy Research, 2019, 43(7), 2583

    Article  CAS  Google Scholar 

  37. Shu C., Song B., Wei X., Liu Y., Tan Q., Chong S., Chen Y., Yang X.-D., Yang W.-H., Liu Y., Carbon, 2018, 129, 613

    Article  CAS  Google Scholar 

  38. Shu C., Chen Y., Yang X.-D., Liu Y., Chong S., Fang Y., Liu Y., Yang W.-H., Journal of Power Sources, 2018, 376, 161

    Article  CAS  Google Scholar 

  39. Lu Y. Z. B., Shi J., Yun S., Energy Mater., 2021, (1), 100007

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No.2021YFB2400400), the China Postdoctoral Science Foundation(No. 2020M673408), the National Natural Science Foundation of China(No. 21905220), the Key Research and Development Plan of Shaanxi Province, China (Nos.2018ZDXM-GY-135, 2021JLM-36), the Fundamental Research Funds for “Young Talent Support Plan” of Xi’an Jiaotong University, China(No. HG6J003), the “1000-Plan Program” of Shaanxi Province and the Velux Foundations Through the Research Center V-Sustain(No.9455).

We also thank Mr LI Chao at the Instrument Analysis Center of Xi’an Jiaotong University for conducting the field emission transmission electron microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, C., Gan, Z., Zhou, J. et al. Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells. Chem. Res. Chin. Univ. 38, 1268–1274 (2022). https://doi.org/10.1007/s40242-022-2223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2223-6

Keywords

Navigation