Skip to main content
Log in

Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

For a practical high-loading single-atom catalyst, it is prone to forming diverse metal species owing to either the synthesis inhomogeneity or the reaction induced aggregation. The diversity of this metal species challenges the discerning about the contributions of specific metal species to the catalytic performance, and thus hampers the rational catalyst design. In this paper, a distinct solution of dispersion analysis based on transmission electron microscopy imaging specialized for metal-supported catalysts has been proposed in the capability of full-metal-species quantification(FMSQ) from single atoms to nanoparticles, including dispersion densities, shape geometry, and crystallographic surface exposure. This solution integrates two image-recognition algorithms including the electron microscopy-based atom recognition statistics (EMARS) for single atoms and U-Net type deep learning network for nanoparticles in different shapes. When applied to the C3N4- and nitrogen-doped carbon-supported catalysts, the FMSQ method successfully identifies the specific activity contributions of Au single atoms and particles in butadiene hydrogenation, which presents remarkable variation with the metal species constitution. This work demonstrates a promising value of our FMSQ strategy for identifying the activity origin of heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T., Accounts Chem. Res., 2013, 46, 1740

    Article  CAS  Google Scholar 

  2. Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634

    CAS  PubMed  Google Scholar 

  3. Zhao Y. F., Zhou H., Zhu X. R., Qu Y. T., Xiong C., Xue Z. G., Zhang Q. W., Liu X. K., Zhou F. Y., Mou X. M., Wang W. Y., Chen M., Xiong Y., Lin X. G., Lin Y., Chen W. X., Wang H. J., Jiang Z., Zheng L. R., Yao T., Dong J. C., Wei S. Q., Huang W. X., Gu L., Luo J., Li Y. F., Wu Y. E., Nature Catal., 2021, 4, 134

    Article  CAS  Google Scholar 

  4. Cheng N., Zhang L., Doyle-Davis K., Sun X., Electrochem. Energy Rev., 2019, 2, 539

    Article  Google Scholar 

  5. Liu L. C., Corma A., Chem. Rev., 2018, 118, 4981

    Article  CAS  Google Scholar 

  6. Fultz B., Howe J., Fultz B.; Eds. Howe J., High-Resolution STEM and Related Imaging Techniques in Transmission Electron Microscopy and Diffractometry of Materials(Graduate Texts in Physics), Springer, Berlin Heidelberg, 2013, 587

  7. Han Y., Duan X., Zhu B., Gao Y., Wiley Interdiscip. Rev.-Comput. Mol. Sci., 2021, e1587

  8. Dessal C., Len T., Morfin F., Rousset J.-L., Aouine M., Afanasiev P., Piccolo L., ACS Catal., 2019, 9, 5752

    Article  CAS  Google Scholar 

  9. Bayram E., Lu J., Aydin C., Browning N. D., Ozkar S., Finney E., Gates B. C., Finke R. G., ACS Catal., 2015, 5, 3514

    Article  CAS  Google Scholar 

  10. Shan J. Q., Ye C., Chen S. M., Sun T. L., Jiao Y., Liu L. M., Zhu C. Z., Song L., Han Y., Jaroniec M., Zhu Y. H., Zheng Y., Qiao S. Z., J. Am. Chem. Soc., 2021, 143, 5201

    Article  CAS  Google Scholar 

  11. Gu J., Jian M. Z., Huang L., Sun Z. H., Li A. W., Pan Y., Yang J. Z., Wen W., Zhou W., Lin Y., Wang H. J., Liu X. Y., Wang L. L., Shi X. X., Huang X. H., Cao L. N., Chen S., Zheng X. S., Pan H. B., Zhu J. F., Wei S. Q., Li W. X., Lu J. L., Nat. Nanotechnol., 2021, 16, 1141

    Article  CAS  Google Scholar 

  12. Liu S., Xu H., Liu D., Yu H., Zhang F., Zhang P., Zhang R., Liu W., J. Am. Chem. Soc., 2021, 143, 15243

    Article  CAS  Google Scholar 

  13. Catherine G., Christina C., Scott M. C., Microsc. Microanal., 2020, 27, 549

    Google Scholar 

  14. Horwath J. P., Zakharov D. N., Megret R., Stach E. A., NPJ Comput. Mater., 2020, 6, 108

    Article  Google Scholar 

  15. Saaim K. M., Afridi S. K., Nisar M., Islam S., Ultramicroscopy, 2022, 233, 113437

    Article  CAS  Google Scholar 

  16. Ge M. S., Liu X. Z., Zhao Z. C., Su F., Gu L., Su D., Adv. Theory Simul., 2022, 5, 2100337

    Article  Google Scholar 

  17. Mitchell S., Pares F., Akl D. F., Collins S. M., Kepaptsoglou D. M., Ramasse Q. M., Garcia-Gasulla D., Perez-Ramirez J., Lopez N., J. Am. Chem. Soc., 2022, 144, 8018

    Article  CAS  Google Scholar 

  18. Ronneberger O., Fischer P., Brox T., Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Springer, Munich, 2015

    Google Scholar 

  19. Jiang Y., Chen Z., Hang Y. M., Deb P., Gao H., Xie S. E., Purohit P., Tate M. W., Park J., Gruner S. M., Elser V., Muller D. A., Nature, 2018, 559, 343

    Article  CAS  Google Scholar 

  20. Lin R., Albani D., Fako E., Kaiser S. K., Safonova O. V., Lopez N., Perez-Ramirez J., Angew. Chem. Int. Edit., 2019, 58, 504

    Article  CAS  Google Scholar 

  21. Howard A., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M., Adam H., ArXiv e-Prints, 2017, ArXiv:1704.04861

  22. Wada K., 2016, Available from: https://plzhai.github.io/labelme/.

  23. Yang S., Xiao W., Zhang M., Guo S., Zhao J., Shen F., ArXiv e-prints, 2022, arXiv:2204.08610

  24. Kingma P. D. Ba J., ArXiv e-Prints, 2014, arXiv:1412.6980

  25. Cox E. P., J. Paleontol., 1927, 1, 179

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22072150, 22172168), the CAS Project for Young Scientists in Basic Research, China(No.YSBR-022), the CAS Youth Innovation Promotion Association, China(No.2019190), and the Innovative Research Funds of Dalian Institute of Chemical Physics, China(No.DICPI202013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronghe Lin or Wei Liu.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, F., Lin, R. et al. Full Metal Species Quantification of Metal Supported Catalysts Through Massive TEM Images Recognition. Chem. Res. Chin. Univ. 38, 1263–1267 (2022). https://doi.org/10.1007/s40242-022-2218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2218-3

Keywords

Navigation