Skip to main content

Advertisement

Log in

Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts

  • Perspective
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Carrier dynamics and surface reaction are two critical processes for determining the performance of photocatalytic reaction. Highly designable polymer-based photocatalysts have shown promising protectives in energetic and environmental applications. In this prospective, we first distinguished the differences of physiochemical properties between polymer-based semiconductors and traditional inorganic semiconductors. Then, the effects of single-atom sites on the charge dynamics and reaction kinetics of polymer-based photocatalysts are further elaborated. Time(excitation)-space(wavefunction) population analysis, which can provide relevant information to clarify the structure-excitation relationships after introducing the single atom sites was also reviewed. In the future, with the further development of artificial intelligence, the establishment of an energy function with a regression accuracy close to or reaching the level of density functional theory is highly desired to infer the energetic diagram of the photocatalytic systems at the excited states. Furthermore, coordination structures, interaction with inorganic semiconductors, photocatalytic stability and solvent effects should also be carefully considered in the future studies of polymer-based photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao B., Wang A., Yang X., Lawrence F. A., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634

    Article  CAS  PubMed  Google Scholar 

  2. Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2, 65

    Article  CAS  Google Scholar 

  3. Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T., Chem. Rev., 2020, 120, 11986

    Article  CAS  PubMed  Google Scholar 

  4. Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev., 2020, 120, 12175

    Article  CAS  PubMed  Google Scholar 

  5. Hai X., Xi S., Mitchell S., Harrath K., Xu H., Akl D. F., Kong D., Li J., Li Z., Sun T., Yang H., Cui Y., Su C., Zhao X., Li J., Perez-Ramirez J., Lu J., Nat. Nanotechnol., 2022, 17, 174

    Article  CAS  PubMed  Google Scholar 

  6. Yang H., Shang L., Zhang Q., Shi R., Geoffrey I. N. W., Gu L., Zhang T., Nat. Comm., 2019, 10, 4585

    Article  Google Scholar 

  7. Yan H., Su C., He J., Chen W., J. Mater. Chem. A, 2018, 6, 8793

    Article  CAS  Google Scholar 

  8. Yan H., Zhao X., Guo N., Lyu Z., Du Y., Xi S., Guo R., Cheng C., Chen Z., Liu W., Yao C., Li J., Pennycook S. J., Chen W., Su C., Zhang C., Lu J., Nat. Comm., 2018, 9, 1

    Article  Google Scholar 

  9. Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater., 2016, 28, 2427

    Article  CAS  PubMed  Google Scholar 

  10. Li X., Fang Y., Wang J., Fang H., Xi S., Zhao X., Xu D., Xu H., Yu W., Hai X., Chen C., Yao C., Tao H. B., Howe A. G. R., Pennycook S. J., Liu B., Lu J., Su C., Nat. Comm., 2021, 12, 2351

    Article  CAS  Google Scholar 

  11. Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120, 11900

    Article  CAS  PubMed  Google Scholar 

  12. Hai X., Zhao X., Guo N., Yao C., Chen C., Liu W., Du Y., Yan H., Li J., Chen Z., Li X., Li Z., Xu H., Lyu P., Zhang J., Lin M., Su C., Stephen J. P., Zhang C., Xi S., Lu J., ACS Catal., 2020, 10, 5862

    Article  CAS  Google Scholar 

  13. Xue Z.-H., Luan D., Zhang H., Lou X. W., Joule, 2022, 6, 92

    Article  CAS  Google Scholar 

  14. Li X., Zeng Y., Tung C.-W., Lu Y.-R., Baskaran S., Hung S.-F., Wang S., Xu C.-Q., Wang J., Chan T.-S., Chen H. M., Jiang J., Yu Q., Huang Y., Li J., Zhang T., Liu B., ACS Catal., 2021, 11, 7292

    Article  CAS  Google Scholar 

  15. Liang S., Huang L., Gao Y., Wang Q., Liu B., Adv. Sci., 2021, 8, 2102886

    Article  CAS  Google Scholar 

  16. Guo W., Wang Z., Wang X., Wu Y., Adv. Mater., 2021, 33, 2004287

    Article  CAS  Google Scholar 

  17. Zhao Y., Zhou H., Zhu X., Qu Y., Xiong C., Xue Z., Zhang Q., Liu X., Zhou F., Mou X., Wang W., Chen M., Xiong Y., Lin X., Lin Y., Chen W., Wang H.-J., Jiang Z., Zheng L., Yao T., Dong J., Wei S., Huang W., Gu L., Luo J., Li Y., Wu Y., Nat. Catal., 2021, 4, 134

    Article  CAS  Google Scholar 

  18. Yang H. B., Hung S.-F., Liu S., Yuan K., Miao S., Zhang L., Huang X., Wang H.-Y., Cai W., Chen R., Gao J., Yang X., Chen W., Huang Y., Chen H. M., Li C. M., Zhang T., Liu B., Nat. Energy, 2018, 3, 140

    Article  CAS  Google Scholar 

  19. Teng Z., Zhang Q., Yang H., Kato K., Yang W., Lu Y.-R., Liu S., Wang C., Yamakata A., Su C., Liu B., Ohno T., Nat. Catal., 2021, 4, 374

    Article  CAS  Google Scholar 

  20. Xiong T., Cen W., Zhang Y., Dong F., ACS Catal., 2016, 6, 2462

    Article  CAS  Google Scholar 

  21. Qiu C., Xu Y., Fan X., Xu D., Tandiana R., Ling X., Jiang Y., Liu C., Yu L., Chen W., Su C., Adv. Sci., 2019, 6, 1801403

    Article  Google Scholar 

  22. Jiang W., Zhao Y., Zong X., Nie H., Niu L., An L., Qu D., Wang X., Kang Z., Sun Z., Angew. Chem. Int. Ed., 2021, 60, 6124

    Article  CAS  Google Scholar 

  23. Hendrik S., Julia K., Gökcen S., Maxwell W. T., Sebastian B., Igor M., Viola D., Filip P., Renée S., Jürgen S., Robert E. D., Christian O., Bettina V. L., Chem. Mater., 2019, 18, 7478

    Google Scholar 

  24. Zhuo H.-Y., Zhang X., Liang J.-X., Yu Q., Xiao H., Li J., Chem. Rev., 2020, 120, 12315

    Article  CAS  PubMed  Google Scholar 

  25. Banerjee T., Podjaski F., Kroeger J., Biswal B. P., Lotsch B. V., Nat. Rev. Mater., 2021, 6, 168

    Article  CAS  Google Scholar 

  26. Nosaka Y., Nosaka A., Introduction to Photocatalysis: From Basic Science to Applications, Royal Society of Chemistry, London, 2016

    Google Scholar 

  27. Zhang Z., Yates J. T., Jr., Chem. Rev., 2012, 112, 5520

    Article  CAS  PubMed  Google Scholar 

  28. Quintana M., Edvinsson T., Hagfeldt A., Boschloo G., J. Phys. Chem. C, 2006, 111, 1035

    Article  Google Scholar 

  29. Williams F., Nozik A. J., Nature, 1984, 312, 21

    Article  CAS  Google Scholar 

  30. Juan B., Peter C., Luca B., Sixto G., J. Phys. Chem. Lett., 2014, 5, 205

    Article  Google Scholar 

  31. Wang Q., Domen K., Chem. Rev., 2019, 2, 919

    Google Scholar 

  32. Liu T., Pan Z., Junie J. M. V., Kato K., Wu B., Yamakata A., Katayama K., Chen B., Chu C., Domen K., Nat. Comm., 2022, 13, 1034

    Article  CAS  Google Scholar 

  33. Nosaka Y., Nosaka A. Y., Chem. Rev., 2017, 117, 11302

    Article  CAS  PubMed  Google Scholar 

  34. Park H., Kim H.-I., Moon G.-H., Choi W., Energy Environ. Sci., 2016, 9, 411

    Article  CAS  Google Scholar 

  35. Le Bahers T., Rerat M., Sautet P., J. Phys. Chem. C, 2014, 118, 5997

    Article  Google Scholar 

  36. Takanabe K., ACS Catal., 2017, 7, 8006

    Article  CAS  Google Scholar 

  37. Li R., Zhang F., Wang D., Yang J., Li M., Zhu J., Zhou X., Han H., Li C., Nat. Comm., 2013, 4, 1432

    Article  Google Scholar 

  38. Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature, 2020, 581, 411

    Article  CAS  PubMed  Google Scholar 

  39. Guiglion P., Butchosa C., Zwijnenburg M. A., Macromol. Chem. Phys., 2016, 217, 344

    Article  CAS  Google Scholar 

  40. Clarke T. M., Durrant J. R., Chem. Rev., 2010, 110, 6736

    Article  CAS  PubMed  Google Scholar 

  41. Teng Z., Cai W., Sim W., Zhang Q., Wang C., Su C., Ohno T., Appl. Catal. B: Environ., 2021, 282, 119589

    Article  CAS  Google Scholar 

  42. Lu T., Chen F., J. Comput. Chem., 2012, 33, 580

    Article  PubMed  Google Scholar 

  43. Puschnig P., Ambrosch-Draxl C., C. R. Phys, 2009, 10, 504

    Article  CAS  Google Scholar 

  44. Rahman M. Z., Mullins C. B., Acc. Chem. Res., 2019, 52, 248

    Article  CAS  PubMed  Google Scholar 

  45. Merschjann C., Tschierlei S., Tyborski T., Kailasam K., Orthmann S., Hollmann D., Schedel-Niedrig T., Thomas A., Lochbrunner S., Adv. Mater., 2015, 27, 7993

    Article  CAS  PubMed  Google Scholar 

  46. Pelzer K. M., Darling S. B., Mol. Syst. Des. Eng., 2016, 1, 10

    Article  CAS  Google Scholar 

  47. Bredas J.-L., Mater. Horiz., 2014, 1, 17

    Article  CAS  Google Scholar 

  48. Lin L., Ou H., Zhang Y., Wang X., ACS Catal., 2016, 6, 3921

    Article  CAS  Google Scholar 

  49. Kim M.-I., Chae B.-G., Nishigaki M., Geosci. J., 2008, 12, 83

    Article  CAS  Google Scholar 

  50. Hughes M. P., Rosenthal K. D., Ran N. A., Seifrid M., Bazan G. C., Nguyen T.-Q., Adv. Fun. Mater., 2018, 28, 1801542

    Article  Google Scholar 

  51. Serway A. R., Jewett W. J., Physics for Scientists & Engineers with Modern Physics, Cengage Learning, Boston, 2020, Chapter 27

  52. Patra P. C., Mohapatra Y. N., Appl. Phy. Lett., 2021, 118, 103501

    Article  CAS  Google Scholar 

  53. Zhou D., Pang L.-X., Wang D.-W., Reaney I. M., J. Mater. Chem. C, 2018, 6, 9290

    Article  CAS  Google Scholar 

  54. Özgür Ü., Alivov Y. I., Liu C., Teke A., Reshchikov M. A., Doğan S., Avrutin V., Cho S. J., Morkoç H., J. Appl. Phys., 2005, 98, 041301

    Article  Google Scholar 

  55. Zhao D., Wang Y., Dong C.-L., Huang Y.-C., Chen J., Xue F., Shen S., Guo L., Nat. Energy, 2021, 6, 388

    Article  CAS  Google Scholar 

  56. Ohno T., Sarukawa K., Matsumura M., New J. Chem., 2002, 26, 1167

    Article  CAS  Google Scholar 

  57. Petousis I., Mrdjenovich D., Ballouz E., Liu M., Winston D., Chen W., Graf T., Schladt T. D., Persson K. A., Prinz F. B., Sci. Data, 2017, 4, 160134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin L., Lin Z., Zhang J., Cai X., Lin W., Yu Z., Wang X., Nat. Cat., 2020, 3, 649

    Article  CAS  Google Scholar 

  59. Wan Y., Wang L., Xu H., Wu X., Yang J., Journal of the American Chemical Society, 2020, 142, 4508

    Article  CAS  PubMed  Google Scholar 

  60. Guiglion P., Monti A., Zwijnenburg M. A., J. Phys. Chem. C, 2017, 121, 1498

    Article  CAS  Google Scholar 

  61. Noda Y., Merschjann C., Tarabek J., Amsalem P., Koch N., Bojdys M. J., Angew. Chem. Int. Ed., 2019, 58, 9394

    Article  CAS  Google Scholar 

  62. Tamai Y., Ohkita H., Benten H., Ito S., J. Phys. Chem. Lett., 2015, 6, 3417

    Article  CAS  PubMed  Google Scholar 

  63. Teng Z., Yang N., Lv H., Wang S., Hu M., Wang C., Wang D., Wang G., Chem, 2019, 5, 664

    Article  CAS  Google Scholar 

  64. Botiz I., Schaller R. D., Verduzco R., Darling S. B., J. Phys. Chem. C, 2011, 115, 9260

    Article  CAS  Google Scholar 

  65. Kosco J., Gonzalez-Carrero S., Howells C. T., Fei T., Dong Y., Sougrat R., Harrison G. T., Firdaus Y., Sheelamanthula R., Purushothaman B., Moruzzi F., Xu W., Zhao L., Basu A., De Wolf S., Anthopoulos T. D., Durrant J. R., McCulloch I., Nat. Energy, 2022, 7, 340

    Article  CAS  Google Scholar 

  66. Lau V. W.-H., Klose D., Kasap H., Podjaski F., Pignie M.-C., Reisner E., Jeschke G., Lotsch B. V., Angew. Chem. Int. Ed., 2017, 56, 510

    Article  CAS  Google Scholar 

  67. Yang W., Godin R., Kasap H., Moss B., Dong Y., Hillman S. A. J., Steier L., Reisner E., Durrant J. R., J. Am. Chem. Soc., 2019, 141, 11219

    Article  CAS  PubMed  Google Scholar 

  68. Zhang P., Tong Y., Liu Y., Vequizo J. J. M., Sun H., Yang C., Yamakata A., Fan F., Lin W., Wang X., Choi W., Angew. Chem. Int. Ed., 2020, 59, 16209

    Article  CAS  Google Scholar 

  69. Dong Z., Zhang L., Gong J., Zhao Q., Chem. Eng. J., 2021, 403, 2021

    Article  Google Scholar 

  70. Casida M. E., Huix-Rotllant M., Eds. Johnson M. A., Martine T. J., Annu. Rev. Phys. Chem., 2012, 63, 287

    Article  Google Scholar 

  71. Laurent A. D., Jacquemin D., Int. J. Quantum Chem., 2013, 113, 2019

    Article  CAS  Google Scholar 

  72. Ghuman K. K., Hoch L. B., Szymanski P., Loh J. Y. Y., Kherani N. P., El-Sayed M. A., Ozin G. A., Singh C. V., J. Am. Chem. Soc., 2016, 138, 1206

    Article  CAS  PubMed  Google Scholar 

  73. Norskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jonsson H., J. Phys. Chem. B, 2004, 108, 17886

    Article  CAS  Google Scholar 

  74. Feng C., Wu Z.-P., Huang K.-W., Ye J., Zhang H., Adv. Mater., 2022, 2200180

    Google Scholar 

  75. Esterhuizen J. A., Goldsmith B. R., Linic S., Nat. Catal., 2022, 5, 175

    Article  Google Scholar 

  76. Niu H., Bonati L., Piaggi P. M., Parrinello M., Nat. Comm., 2020, 11, 2654

    Article  CAS  Google Scholar 

  77. Zhao Y., Yang N., Wang C., Song L., Yu R., Wang D., APL Mater., 2021, 9, 071102

    Article  CAS  Google Scholar 

  78. Qi Q., Xu L., Du J., Yang N., Wang D., Chem. Res. Chinese Universities, 2021, 37(5), 1158

    Article  CAS  Google Scholar 

  79. Zhao Y., Wan J., Yao H., Zhang L., Lin K., Wang L., Yang N., Liu D., Song L., Zhu J., Gu L., Liu L., Zhao H., Li Y., Wang D., Nat. Chem., 2018, 10, 924

    Article  CAS  PubMed  Google Scholar 

  80. Liu B., Xu L., Zhao Y., Du J., Yang N., Wang D., J. Mater. Chem. A, 2021, 9, 19298

    Article  CAS  Google Scholar 

  81. Zhan S., Zhao Y., Yang N., Wang D., Chem. J. Chinese Universities, 2021, 42(2), 333

    Google Scholar 

  82. Zhao Y., Yang N., Yao H., Liu D., Song L., Zhu J., Li S., Gu L., Lin K., Wang D., J. Am. Chem. Soc., 2019, 141, 7240

    Article  CAS  PubMed  Google Scholar 

  83. Zhao Y., Yang N., Yu R., Zhang Y., Zhang J., Li Y., Wang D., EnergyChem, 2020, 2, 100041

    Article  Google Scholar 

  84. Lin C., Kim T., Schultz J. D., Young R. M., Wasielewski M. R., Nat. Chem., 2022, 14, 786

    Article  CAS  PubMed  Google Scholar 

  85. Wahab M. A., Joseph J., Atanda L., Sultana U. K., Beltramini J. N., Ostrikov K., Will G., O’Mullane A. P., Abdala A., ACS Appl. Energy Mater., 2020, 3, 1439

    Article  CAS  Google Scholar 

  86. Chen P., Dong X. A., Huang M., Li K., Xiao L., Sheng J., Chen S., Zhou Y., Dong F., ACS Catal., 2022, 12, 4560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mitsubishi Chemical Corporation, JSPS Grant-in-Aid for Scientific Research(B, No.20H02847), the Grant-in-Aid for JSPS Fellows(DC2, No.20J13064), the National Natural Science Foundation of China(No.21805191), the Guangdong Basic and Applied Basic Research Foundation, China(No.2020A1515010982), and the Shenzhen Stable Support Project, China(No.20200812122947002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyuan Teng.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Z., Yang, H., Zhang, Q. et al. Carrier Dynamics and Surface Reaction Boosted by Polymer-based Single-atom Photocatalysts. Chem. Res. Chin. Univ. 38, 1207–1218 (2022). https://doi.org/10.1007/s40242-022-2215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2215-6

Keywords

Navigation