Skip to main content
Log in

Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this work, the effect of Nafion ionomer content on the structure and catalytic performance of direct CO polymer electrolyte membrane fuel cell(CO-PEMFC) by using Rh-N-C single-atom catalyst as the anode catalyst layers was studied. The ionic plaque and roughness of the anode catalyst layers increase with the increase of Nafion ionomer content. Furthermore, the contact angle measurement results show that the hydrophilicity of the anode catalyst layers also increases with the increase of Nafion ionomer content. However, when the Nafion ionomer content is too low, the binding between microporous layers, catalyst layers and membrane cannot meet the requirement for either electric conductivity or mass transfer. While Nafion ionomer content increased above 30%, the content of water in anode is difficult to control. Therefore, it was found that AN 30(30% Nafion ionomer content of anode) is the best level to effectively extend the three-phase boundary and improve CO-PEMFCs performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao K. Y., Li H. B., Li T. Y., Liang M. H., Liu B. J., Liu Z. C., Peng J. W., Wang P., Chem J. Chinese Universities, 2020, 41(12), 2845

    Google Scholar 

  2. Chen C. L., Li Y. J., Mi W. L., Chem. J. Chinese Universities, 2021, 43(2), 1

    Google Scholar 

  3. Kang Y. Q., Wang J. Q., Wei Y. P., Wu Y. L., Xia D. S., Gan L., Nano Research, 2022, 15(7), 6148

    Article  CAS  Google Scholar 

  4. Luo Y., Wu Y. H., Li B., Qu J. K., Feng S. P., Chu P. K., International Journal of Energy Research, 2021, 45(13), 18392

    Article  Google Scholar 

  5. Rudolf T., Schurmann T., Schwab S., Hohmann S., Proceedings of the IEEE, 2021, 109(6), 1094

    Article  CAS  Google Scholar 

  6. Alyakhni A., Boulon L., Vinassa J. M., Briat O., IEEE Access, 2021, 9, 143922

    Article  Google Scholar 

  7. Fathabadi H., Energy, 2018, 143, 467

    Article  Google Scholar 

  8. Abdollahzadeh M., Ribeirinha P., Boaventura M., Mendes A., Energy, 2018, 152, 939

    Article  CAS  Google Scholar 

  9. Huang C. Y., Chen Y. Y., Su C. C., Hsu C. F., J. Power Sources, 2007, 174(1), 294

    Article  CAS  Google Scholar 

  10. Li Y., Wang X., Mei B. B., Wang Y., Luo Z. Y., Luo E. G., Yang X. L., Shi Z. P., Liang L., Jin Z., Wu Z. J., Jiang Z., Liu C. P., Xing W., Ge J. J., Science Bulletin, 2021, 66(13), 1305

    Article  CAS  Google Scholar 

  11. Moreno N. G., Molina M. C., Gervasio D., Robles J. F. P., Renewable & Sustainable Energy Reviews, 2015, 52, 897

    Article  Google Scholar 

  12. Liu Q. S., Lan F. C., Chen J. Q., Zeng C. J., Wang J. F., J. Power Sources, 2022, 517, 23

    Article  Google Scholar 

  13. Lim B. H., Majlan E. H., Tajuddin A., Husaini T., Daud W. R. W., Radzuan N. A. M., Haque M. A., Chin. J. Chem. Eng., 2021, 33, 1

    Article  CAS  Google Scholar 

  14. Luo B., Pan M., Zhou F., Chem. J. Chinese Universities, 2022, 43(4), 20210853

    Google Scholar 

  15. Wang K., Li N., Yang Y. N., Ke S. J., Zhang Z. P., Dou M. L., Wang F., Chin. Chem. Lett., 2021, 32(10), 3159

    Article  CAS  Google Scholar 

  16. Moghaddam R. B., Easton E. B., Electrochim Acta, 2018, 292, 292

    Article  CAS  Google Scholar 

  17. Xi J. Y., Meng K., Li Y., Wang M., Liao Q., Wei Z. D., Shao M. H., Wang J. C., Chin. J. Chem. Eng., 2022, 41, 473

    Article  Google Scholar 

  18. Han D. B., Tsipoaka M., Shanmugam S., J. Power Sources, 2021, 496, 9

    Article  Google Scholar 

  19. Kim K. H., Lee K. Y., Kim H. J., Cho E., Lee S. Y., Lim T. H., Yoon S. P., Hwang I. C., Jang J. H., Int. J. Hydrogen Energy, 2010, 35(5), 2119

    Article  CAS  Google Scholar 

  20. Prasanna M., Cho E. A., Lim T. H., Oh I. H., Electrochim Acta, 2008, 53(16), 5434

    Article  CAS  Google Scholar 

  21. Daniel L., Bonakdarpour A., Sharman J., Wilkinson D. P., Fuel Cells, 2020, 20(2), 224

    Article  CAS  Google Scholar 

  22. Liu X. Y., Zhou Z. F., Bai M. L., Poramapojana P., Li Y., Gao L. S., Li Y. L., Li Y. B., International Journal of Energy Research, 2002, 46(9), 11778

    Article  Google Scholar 

  23. Poltarzewski Z., Staiti P., Alderucci V., Wieczorek W., Giordano N., J. Electrochem. Soc., 1992, 139(3), 761

    Article  CAS  Google Scholar 

  24. Staiti P., Poltarzewski Z., Alderucci V., Maggio G., Giordano N., Int. J. Hydrogen Energy, 1994, 19(6), 523

    Article  CAS  Google Scholar 

  25. Long Z., Deng G. R., Liu C. P., Ge J. J., Xing W., Ma S. H., Chinese Journal of Catalysis, 2016, 37(7), 988

    Article  CAS  Google Scholar 

  26. Yang D. J., Tan Y. L., Li B., Ming P. W., Xiao Q. F., Zhang C. M., Membranes, 2022, 12(3), 24

    Article  CAS  Google Scholar 

  27. Gurau V., Mann J. A., Siam Journal on Applied Mathematics, 2009, 70(2), 410

    Article  Google Scholar 

  28. Li T., Shen J. B., Chen G. Y., Guo S. Y., Xie G. Y., Acs Omega, 2020, 5(28), 17628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng J. S., Dai N. N., Zhu S. Y., Gao Y., Ye L. C., Ma J. X., Zheng J. P., J. Alloys Compd., 2018, 769, 471

    Article  CAS  Google Scholar 

  30. Shahgaldi S., Alaefour I., Li X. G., Applied Energy, 2018, 225, 1022

    Article  CAS  Google Scholar 

  31. Parniere A., Blanchard P. Y., Cavaliere S., Donzel N., Prelot B., Roziere J., Jones D. J., J. Electrochem. Soc., 2022, 169(4), 11

    Article  Google Scholar 

  32. Adilbish G., Yu Y. T., Int. J. Hydrogen Energy, 2017, 42(2), 1181

    Article  CAS  Google Scholar 

  33. Jung U. H., Jeong S. U., Park K. T., Lee H. M., Chun K., Choi D. W., Kim S. H., Int. J. Hydrogen Energy, 2007, 32(17), 4459

    Article  CAS  Google Scholar 

  34. Roh C. W., Choi J., Lee H., Electrochem. Commun., 2018, 97, 105

    Article  CAS  Google Scholar 

  35. Natarajan S. K., Hamelin J., J. Power Sources, 2010, 195(22), 7574

    Article  CAS  Google Scholar 

  36. Gharibi H., Faraji M., Kheirmand M., Electroanalysis, 2012, 24(12), 2354

    Article  CAS  Google Scholar 

  37. Li G. C., Pickup P. G., J. Electrochem. Soc., 2003, 150(11), C745

    Article  CAS  Google Scholar 

  38. Zheng C. Y., Geng F., Rao Z. H., Computational Materials Science, 2017, 132, 55

    Article  CAS  Google Scholar 

  39. Bultel Y., Wiezell K., Jaouen F., Ozil P., Lindbergh G., Electrochim. Acta, 2005, 51(3), 474

    Article  CAS  Google Scholar 

  40. Wu R., Liao Q., Zhu X., Wang H., Int. J. Hydrogen Energy, 2012, 37(15), 11255

    Article  CAS  Google Scholar 

  41. Choi J., Yeon J. H., Yook S. H., Shin S., Kim J. Y., Choi M., Jang S., ACS Applied Materials & Interfaces, 2021, 13(1), 806

    Article  CAS  Google Scholar 

  42. Yamazaki S., Ioroi T., Yamada Y., Yasuda K., Kobayashi T., Angewandte Chemie-International Edition, 2006, 45(19), 3120

    Article  CAS  PubMed  Google Scholar 

  43. Wang X., Li Y., Wang Y., Zhang H., Jin Z., Yang X. L., Shi Z. P., Liang L., Wu Z. J., Jiang Z., Zhang W., Liu C. P., Xing W., Ge J. J., Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(43), 7

    Google Scholar 

  44. Yang X. L., Wang Y., Wang X., Mei B. B., Luo E. G., Li Y., Meng Q. L., Jin Z., Jiang Z., Liu C. P., Ge J. J., Xing W., Angewandte Chemie-International Edition, 2021, 60(50), 26177

    Article  CAS  PubMed  Google Scholar 

  45. Madadi F., Rezaeian A., Edris H., Zhiani M., Surf. Coat. Technol., 2020, 389, 125676

    Article  CAS  Google Scholar 

  46. Deschamps F. L., Mahy J. G., Leonard A. F., Lambert S. D., Dewandre A., Scheid B., Job N., Thin Solid Films, 2020, 695, 14

    Article  Google Scholar 

  47. Mathias M. F., Makharia R., Gasteiger H. A., Conley J. J., Fuller T., Gittleman C., Kocha S. S., Electrochemical Society Interface, 2005, 14(3), 24

    Article  CAS  Google Scholar 

  48. Wood D. L., Rulison C., Borup R. L., J. Electrochem. Soc., 2010, 157(2), B195

    Article  CAS  Google Scholar 

  49. Planes E., de Moor G., Bas C., Flandin L., Fuel Cells, 2018, 18(2), 148

    Article  CAS  Google Scholar 

  50. Beniya A., Higashi S., Nature Catalysis, 2019, 2(7), 590

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21633008, 21875243, 21673221 and U1601211), the Science and Technology Development Program of Jilin Province, China(Nos.20200201001JC, 20190201270JC and 20180101030JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian Wang, Junjie Ge or Wei Xing.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, X., Liu, J. et al. Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell. Chem. Res. Chin. Univ. 38, 1251–1257 (2022). https://doi.org/10.1007/s40242-022-2193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2193-8

Keywords

Navigation