Skip to main content
Log in

Responsive Polymers with Contraction-arisen Helicity and Biomimetic Membrane-spanning Transport Functions

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Responsive polymers have attracted increasing attention for prospective design of smart materials. The development of multifunctional responsive materials is very dependent on polymeric structures that can be manipulated with the change of microenvironment at the molecular level. Herein, we report a type of responsive coordination polymers(RCPs) consisting of dual phenanthroline-oxadiazole(DPO) units and metal Zn2+ ions, which can contract from linear structure into topologically helical structure driven by hydrophobic effect while changing the microenvironment from nonpolar solvent to aqueous media. The symmetry breaking of RCPs was confirmed by circular dichroism(CD) spectra and atomic force microscope(AFM) images, clearly demonstrating the intramolecularly contraction-arisen helicity. Moreover, RCPs can intelligently adapt different microenvironments by changing their conformations, as evidenced by a demonstration of biomimetic lipid bilayer-based vesicle experiments. Furthermore, RCPs show significant concentration-dependent transmembrane transport functions, implying that RCPs are able to span cellular membranes to form channels inside the hydrophobic lipid bilayers. At the same time, the electrophysiological conductance experiments further underpin the biomimetic transport functions and channel-based conduction mechanism of RCPs. This study demonstrates an important paradigm of responsive polymers performing microenvironment-induced conformational change and thereof unique functions, and thus provides valuable insights on the development of functional responsive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao Z.-Q., Wang G.-J., The Chemical Record, 2016, 16, 1398

    Article  CAS  Google Scholar 

  2. Schattling, P., Jochum F. D. Theato P., Polymer Chemistry, 2014, 5, 25

    Article  CAS  Google Scholar 

  3. Zhai L., Chemical Society Reviews, 2013, 42, 7148

    Article  CAS  Google Scholar 

  4. Claassens I. E., Barbour L. J., Haynes D. A., Journal of the American Chemical Society, 2019, 141, 11425

    Article  CAS  Google Scholar 

  5. Zhang Z., Xu B., Xu B., Jin L., Dai H.-L., Rao Y., Ren S., Advanced Materials Interfaces, 2017, 4, 1600769

    Article  Google Scholar 

  6. Rybtchinski B., ACS Nano, 2011, 5, 6791

    Article  CAS  Google Scholar 

  7. Hu J., Liu S., Accounts of Chemical Research, 2014, 47, 2084

    Article  CAS  Google Scholar 

  8. Miyauchi M., Harada A., Journal of the American Chemical Society, 2004, 126, 11418

    Article  CAS  Google Scholar 

  9. Wei P., Yan X., Huang F., Chemical Society Reviews, 2015, 44, 815

    Article  CAS  Google Scholar 

  10. Batten S. R., Robson R., Angewandte Chemie International Edition, 1998, 37, 1460

    Article  Google Scholar 

  11. Shao L., Yang J., Hua B., Polymer Chemistry, 2018, 9, 1293

    Article  CAS  Google Scholar 

  12. Winter A., Schubert U. S., Chemical Society Reviews, 2016, 45, 5311

    Article  CAS  Google Scholar 

  13. Neal J. A., Oldenhuis N. J., Novitsky A. L., Samson E. M. Thrift W. J., Ragan R., Guan Z., Angewandte Chemie International Edition, 2017, 56, 15575

    Article  CAS  Google Scholar 

  14. Mozhdehi D., Neal J. A., Grindy S. C., Cordeau Y. Ayala S., Holten-Andersen N., Guan Z., Macromolecules, 2016, 49, 6310

    Article  CAS  Google Scholar 

  15. Zhu J., Dong Z., Lei S., Cao L., Yang B., Li W., Zhang Y., Liu J., Shen J., Angewandte Chemie International Edition, 2015, 54, 3097

    Article  CAS  Google Scholar 

  16. Xu J.-F., Chen Y.-Z., Wu D., Wu L.-Z., Tung C.-H., Yang Q.-Z., Angewandte Chemie International Edition, 2013, 52, 9738

    Article  CAS  Google Scholar 

  17. Yang S. K., Zimmerman S. C., Israel Journal of Chemistry, 2013, 53, 511

    Article  CAS  Google Scholar 

  18. Gröger G., Meyer-Zaika W., Böttcher C., Gröhn F., Ruthard C., Schmuck C., Journal of the American Chemical Society, 2011, 133, 8961

    Article  Google Scholar 

  19. Lafleur R. P. M., Lou X., Pavan G. M., Palmans A. R. A., Meijer E. W., Chemical Science, 2018, 9, 6199

    Article  CAS  Google Scholar 

  20. Li C.-H., Wang C., Keplinger C., Zuo J.-L., Jin L., Sun Y., Zheng P., Cao Y., Lissel F., Linder C., You X.-Z., Bao Z., Nature Chemistry, 2016, 8, 618

    Article  CAS  Google Scholar 

  21. Takashima Y., Hatanaka S., Otsubo M., Nakahata M., Kakuta T., Hashidzume A., Yamaguchi H., Harada A., Nature Communications, 2012, 3, 1270

    Article  Google Scholar 

  22. Kushner A. M., Vossler J. D., Williams G. A., Guan Z., Journal of the American Chemical Society, 2009, 131, 8766

    Article  CAS  Google Scholar 

  23. Shi P., Miwa E., He J., Sakai M., Seki T., Takeoka Y., ACS Applied Materials & Interfaces, 2021, 13, 55591

    Article  CAS  Google Scholar 

  24. Chen Y., Guan Z., Journal of the American Chemical Society, 2010, 132, 4577

    Article  CAS  Google Scholar 

  25. Chung J., Kushner A. M., Weisman A. C., Guan Z., Nature Materials, 2014, 13, 1055

    Article  CAS  Google Scholar 

  26. Devaux F., Li X., Sluysmans D., Maurizot V., Bakalis E., Zerbetto F., Huc I., Duwez A.-S., Chem, 2021, 7, 1333

    Article  CAS  Google Scholar 

  27. Qi S., Zhang C., Yu H., Zhang J., Yan T., Lin Z., Yang B., Dong Z., Journal of the American Chemical Society, 2021, 143, 3284

    Article  CAS  Google Scholar 

  28. Kano K., Fendler J. H., Biochimica et Biophysica Acta (BBA) — Biomembranes, 1978, 509, 289

    Article  CAS  Google Scholar 

  29. Sakai N., Matile S., Journal of Physical Organic Chemistry, 2006, 19, 452

    Article  CAS  Google Scholar 

  30. Lang C., Li W., Dong Z., Zhang X., Yang F., Yang B. Deng X., Zhang C., Xu J., Liu J., Angewandte Chemie International Edition, 2016, 55, 9723

    Article  CAS  Google Scholar 

  31. Fyles T. M., Chemical Society Reviews, 2007, 36, 335

    Article  CAS  Google Scholar 

  32. Matile S., Sakai N., Analytical Methods in Supramolecular Chemistry, 2006, 391

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22071078, 92156012 and 21722403) and the Program for Jilin University Science and Technology Innovative Research Team(JLUSTIRT), China (No.2019TD-36).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyan Wang or Zeyuan Dong.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, J., Zhang, C., Qi, S. et al. Responsive Polymers with Contraction-arisen Helicity and Biomimetic Membrane-spanning Transport Functions. Chem. Res. Chin. Univ. 38, 803–808 (2022). https://doi.org/10.1007/s40242-022-2031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2031-z

Keywords

Navigation