Skip to main content
Log in

Mechanistic Insight into Ethanol Dehydration over SAPO-34 Zeolite by Solid-state NMR Spectroscopy

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The reaction mechanism of ethanol dehydration over SAPO-34 zeolite is investigated by using solid-state NMR spectroscopy. SAPO-34 zeolites with different Si contents are prepared and their acidities are characterized by NMR experiments. The higher content of stronger Brønsted acid sites is correlated to the higher Si content. The adsorption of ethanol on the Brønsted acid sites in SAPO-34 leads to the formation of frustrated Lewis pairs(FLPs). Surface ethoxy species is observed by the dehydration of the FLP sites at room temperature, which can be further converted into ethene products. The decomposing of diethyl ether over Brønsted acid sites is responsible for the formation of ethoxy species at higher reaction temperatures. Triethyloxonium ions are formed in the reaction. A plausible reaction mechanism is proposed for the dehydration of ethanol over SAPO-34.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang C. D., Lang W. H., Smith R. L., J. Catal., 1979, 56, 169

    Article  CAS  Google Scholar 

  2. Jin S. Q., Sun H. M., Yang W. M., Chem. J. Chinese Universities, 2021, 42(2), 217

    Google Scholar 

  3. Zhang M., Yu Y., Ind. Eng. Chem. Res., 2013, 52, 9505

    Article  CAS  Google Scholar 

  4. Gunsalus N. J., Koppaka A., Park S. H., Bischof S. M., Hashiguchi B. G., Periana R. A., Chem. Rev., 2017, 117, 8521

    Article  CAS  PubMed  Google Scholar 

  5. Hoekman S. K., Broch A., Robbins C., Ceniceros E., Natarajan M., Renew. Energy, 2012, 16, 143

    Article  CAS  Google Scholar 

  6. Sheldon R. A., Green Chem., 2014, 16, 950

    Article  CAS  Google Scholar 

  7. Chieregato A., Ochoa J. V., Cavani F., Olefins from Biomass, John Wiley & Sons, New York, 2016

    Book  Google Scholar 

  8. Farrell A. E., Plevin R. J., Turner B. T., Jones A. D., Hare M., Kammen D. M., Science, 2006, 311, 506

    Article  CAS  PubMed  Google Scholar 

  9. Pearson D. E., Tanner R. D., Picciotto I. D., Sawyer J. S., Cleveland J. H., Ind. Eng. Chem. Prod. Res. Dev., 1981, 20, 734

    Article  CAS  Google Scholar 

  10. Adkins H., Perkins P. P., J. Am. Chem. Soc., 1925, 47, 1163

    Article  CAS  Google Scholar 

  11. Haag W. O., Pines H., J. Am. Chem. Soc., 1960, 82, 2488

    Article  CAS  Google Scholar 

  12. Adkins H., Perkins P. P., J. Am. Chem. Soc., 1925, 47, 1163

    Article  CAS  Google Scholar 

  13. Gurgul J., Zimowska M., Mucha D., Socha R. P., Matachowski L., J. Mol. Catal. A: Chem., 2011, 351, 1

    Article  CAS  Google Scholar 

  14. Varisli D., Dogu T., Dogu G., Ind. Eng. Chem. Res., 2008, 47, 4071

    Article  CAS  Google Scholar 

  15. Varisli D., Dogu T., Dogu G., Chem. Eng. Sci., 2007, 62, 5349

    Article  CAS  Google Scholar 

  16. Diaz Alvarado F., Gracia F., Chem. Eng. J., 2010, 165, 649

    Article  CAS  Google Scholar 

  17. Phillips C. B., Datta R., Ind. Eng. Chem. Res., 1997, 36, 4466

    Article  CAS  Google Scholar 

  18. Bi J., Guo X., Liu M., Wang X., Catal. Today, 2010, 149, 143

    Article  CAS  Google Scholar 

  19. Sun J., Wang Y., ACS Catal., 2014, 4, 1078

    Article  CAS  Google Scholar 

  20. Li Z., Lepore A. W., Salazar M. F., Foo G. S., Davison B. H., Wu Z., Narula C. K., Green. Chem., 2017, 19, 4344

    Article  CAS  Google Scholar 

  21. Barthos R., Széchenyi A., Solymosi F., J. Phys.Chem. B, 2006, 110, 21816

    Article  CAS  PubMed  Google Scholar 

  22. van der Borght K., Batchu R., Galvita V. V., Alexopoulos K., Reyniers M.-F., Thybaut J. W., Marin G. B., Angew. Chem. Int. Ed., 2016, 55, 12817

    Article  CAS  Google Scholar 

  23. Alexopoulos K., John M., van der Borght K., Galvita V., Reyniers M. F., Marin G. B., J. Catal., 2016, 339, 173

    Article  CAS  Google Scholar 

  24. Kondo J. N., Ito K., Yoda E., Wakabayashi F., Domen K., J. Phys. Chem. B, 2005, 109, 10969

    Article  CAS  PubMed  Google Scholar 

  25. Kondo J. N., Nishioka D., Yamazaki H., Kubota J., Domen K., Tatsumi T., J. Phys. Chem. C, 2010, 114, 20107

    Article  CAS  Google Scholar 

  26. Wang W., Jiao J., Jiang Y., Ray Siddharth S., Hunger M., ChemPhysChem, 2005, 6, 1467

    Article  CAS  PubMed  Google Scholar 

  27. Zhou X., Wang C., Chu Y. Y., Xu J., Wang Q., Qi G. D., Zhao X. L., Feng N. D., Deng F., Nat. Commun., 2019, 10, 1961

    Article  PubMed  PubMed Central  Google Scholar 

  28. Derouane E. G., Nagy J. B., Dejaifve P., van Hooff J. H. C., Spekman B. P., Védrine J. C., Naccache C., J. Catal., 1978, 53, 40

    Article  CAS  Google Scholar 

  29. Chowdhury A. D., LuciniéPaioni A., Whiting G. T., Fu D., Baldus M., Weckhuysen B. M., Angew. Chem. Int. Ed., 2019, 58, 3908

    Article  CAS  Google Scholar 

  30. Anderson J. R., Mole T., Christov V., J. Catal, 1980, 61, 477

    Article  CAS  Google Scholar 

  31. Eagan N. M., Kumbhalkar M. D., Buchanan J. S., Dumesic J. A., Huber G. W., Nat. Rev. Chem., 2019, 3, 223

    Article  CAS  Google Scholar 

  32. Wang C., Xu J., Deng F., ChemCatChem, 2020, 12, 965

    Article  CAS  Google Scholar 

  33. Martins G. A. V., Berlier G., Coluccia S., Pastore H. O., Superti G. B., Gatti G., Marchese L., J. Phys. Chem. C, 2007, 111, 330

    Article  CAS  Google Scholar 

  34. Li Z., Martínez-Triguero J., Yu J., Corma A., J. Catal., 2015, 329, 379

    Article  CAS  Google Scholar 

  35. Heard C. J., Grajciar L., Rice C. M., Pugh S. M., Nachtigall P., Ashbrook S. E., Morris R. E., Nat. Commun., 2019, 10, 4690

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pugh S. M., Wright P. A., Law D. J., Thompson N., Ashbrook S. E., Facile J. Am. Chem. Soc., 2020, 142, 900

    Article  CAS  PubMed  Google Scholar 

  37. Yang L., Wang C., Zhang L., Dai W., Chu Xu J., Wu G., Gao M., Liu W., Xu Z., Wang P., Guan N., Dyballa M., Ye M., Deng F., Fan W., Li L., Nat Commun., 2021, 12, 4661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li G. C., Foo C., Yi X. F., Chen W., Zhao P., Gao P., Yoskamtorn T., Xiao Y., Day S., Tang C. C., Hou G. J., Zheng A. M., Tsang S. C. E., J. Am. Chem. Soc., 2021, 143, 8761

    Article  CAS  PubMed  Google Scholar 

  39. Hirota Y., Murata K., Tanaka S., Nishiyama N., Egashira Y., Ueyama K., Mater. Chem. Phys., 2010, 123, 507

    Article  CAS  Google Scholar 

  40. Buchholz A., Wang W., Xu M., Arnold A., Hunger M., Micro. Mes. Mater., 2002, 56, 267

    Article  CAS  Google Scholar 

  41. Zhao S. F., Huang J., Chem. J. Chinese Universities, 2021, 42(1), 165

    Google Scholar 

  42. Barthomeuf D., Zeolites, 1994, 14, 394

    Article  CAS  Google Scholar 

  43. Hunger M., Catal. Rev., 1997, 39, 345

    Article  CAS  Google Scholar 

  44. Zubkov S. A., Kustov L. M., Kazansky V. B., Girnus I., Fricke R., J. Chem. Soc. Faraday Trans., 1991, 87, 897

    Article  CAS  Google Scholar 

  45. Li S. H., Zheng A. M., Su Zhang H., Chen L., Yang J., Ye C., Deng F., J. Am. Chem. Soc., 2007, 129, 11161

    Article  CAS  PubMed  Google Scholar 

  46. Li S. H., Huang S.-J., Shen W., Zhang H., Fang H., Zheng A. M., Liu S.-B., Deng F., J. Phys. Chem. C, 2008, 112, 14486

    Article  CAS  Google Scholar 

  47. Biaglow A. I., Sepa J., Gorte R. J., White D., J. Catal., 1995, 151, 373

    Article  CAS  Google Scholar 

  48. Wang Z., O’Dell L. A., Zeng X., Liu C., Zhao S., Zhang W., Gaborieau M., Jiang Y., Huang J., Angew. Chem. Int. Ed., 2019, 58, 18061

    Article  CAS  Google Scholar 

  49. Comas-Vives A., Valla M., Copéret C., Sautet P., ACS Cent. Sci., 2015, 1, 313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang C., Chu Y. Y., Xu J., Wang Q., Qi G. D., Gao P., Zhou X., Deng F., Angew. Chem. Int. Ed., 2018, 57, 10197

    Article  CAS  Google Scholar 

  51. Gao P., Xu J., Qi G. D., Wang C., Wang Q., Zhao Y. X., Zhang Y. H., Feng N. D., Zhao X. L., Li J. L., Deng F., ACS Catal., 2018, 8, 9809

    Article  CAS  Google Scholar 

  52. Wang C., Zhao X., Hu M., Qi G., Wang Q., Li S., Xu J., Deng F., Angew. Chem. Int. Ed., 2021, 60, 23630

    Article  CAS  Google Scholar 

  53. Gao W., Qi G.D., Wang Q., Wang W. W., Li S. H., Hung I., Gan Z. H., Xu J., Deng F., Angew. Chem. Int. Ed., 2021, 60, 10709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22072165, U1932218, 21991092, 21733013, 21773296), the National Natural Science Foundation of China-Royal Society(No.22061130202), and the Project of the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021329).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Xu or Feng Deng.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, C., Chu, Y. et al. Mechanistic Insight into Ethanol Dehydration over SAPO-34 Zeolite by Solid-state NMR Spectroscopy. Chem. Res. Chin. Univ. 38, 155–160 (2022). https://doi.org/10.1007/s40242-022-1450-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-1450-1

Keywords

Navigation