Skip to main content
Log in

Synthesis of FER Zeolite Using 4-(Aminomethyl)pyridine as Structure-directing Agent

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

This paper describes the synthesis of FER zeolite using commercially available 4-(aminomethyl)pyridine as organic structure-directing agent(OSDA). FER zeolites were prepared in mixtures with SiO2/Al2O3 molar ratios in a narrow range and the resultant products possessed a typical flake-shaped morphology. The crystallization of FER zeolite was tracked in order to better understand the formation mechanism and the products obtained at different crystallization time were systematically characterized using multiple techniques. It showed that a majority of Si atoms and nearly all the Al atoms transformed into the solid phase during the hydrothermal synthesis. The rearrangement of inorganic species gave rise to zeolitic 5-membered rings(5-MRs) and 6-membered rings(6-MRs). Consequently, FER zeolite crystals were formed by the consumption of amorphous bulky gel/solid matrix. Tracking the synthesis process of FER can help.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis M. E., Nature, 2002, 417, 813

    Article  CAS  PubMed  Google Scholar 

  2. Moliner M., Rey F., Corma A., Angew. Chem. Int. Ed. Engl., 2013, 52, 13880

    Article  CAS  PubMed  Google Scholar 

  3. Ackley M. W., Rege S. U., Saxena H., Microporous Mesoporous Mater., 2003, 61, 25

    Article  CAS  Google Scholar 

  4. Dĕdeček J., Sobalík Z., Wichterlová B., Catalysis Reviews, 2012, 54, 135

    Article  Google Scholar 

  5. Li K., Valla J., Garcia-Martinez J., ChemCatChem, 2014, 6, 46

    Article  CAS  Google Scholar 

  6. Inamuddin D., Luqman M., Ion Exchange Technology II: Applications, Springer Netherlands, Dordrecht, 2012

    Book  Google Scholar 

  7. Cundy C. S., Cox P. A., Chem. Rev., 2003, 103, 663

    Article  CAS  PubMed  Google Scholar 

  8. Lu P., Villaescusa L. A., Camblor M. A., Chem. Rec., 2018, 18, 713

    Article  CAS  PubMed  Google Scholar 

  9. Seward T. M., Phys. Chem. Earth, 1981, 13/14, 113

    Article  Google Scholar 

  10. Erdem-Senatalar A., Tatlıer M., Ürgen M., Microporous Mesoporous Mater., 1999, 32, 331

    Article  CAS  Google Scholar 

  11. Yonkeu A. L., Miehe G., Fuess H., Goossens A. M., Martens J. A., Microporous Mesoporous Mater., 2006, 96, 396

    Article  CAS  Google Scholar 

  12. Francis R. J., Price S. J., O’Brien S., Fogg A. M., O’Hare D., Loiseau T., Férey G., Chem. Commun., 1997, 521

  13. Chen B., Huang Y., J. Am. Chem. Soc., 2006, 128, 6437

    Article  CAS  PubMed  Google Scholar 

  14. O’Brien M. G., Beale A. M., Catlow C. R. A., Weckhuysen B. M., J. Am. Chem. Soc., 2006, 128, 11744

    Article  PubMed  Google Scholar 

  15. Ren L., Li C., Fan F., Guo Q., Liang D., Feng Z., Li C., Li S., Xiao F.-S., Chem. Eur. J., 2011, 17, 6162

    Article  CAS  PubMed  Google Scholar 

  16. Fan F., Feng Z., Li G., Sun K., Ying P., Li C., Chem. Eur. J., 2008, 14, 5125

    Article  CAS  PubMed  Google Scholar 

  17. Kumar M., Choudhary M. K., Rimer J. D., Nat. Commun., 2018, 9, 2129

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cundy C. S., Henty M. S., Plaisted R. J., Zeolites, 1995, 15, 342

    Article  CAS  Google Scholar 

  19. Burkett S. L., Davis M. E., J. Phys. Chem., 1994, 98, 4647

    Article  CAS  Google Scholar 

  20. Yamada H., Tominaka S., Ohara K., Liu Z., Okubo T., Wakihara T., J. Phys. Chem. C, 2019, 123, 28419

    Article  CAS  Google Scholar 

  21. Shukla D. B., Pandya V. P., J. Chem. Technol. Biot., 1989, 44, 147

    Article  CAS  Google Scholar 

  22. Umeda T., Yamada H., Ohara K., Yoshida K., Sasaki Y., Takano M., Inagaki S., Kubota Y., Takewaki T., Okubo T., Wakihara T., J. Phys. Chem. C, 2017, 121, 24324

    Article  CAS  Google Scholar 

  23. Muraoka K., Sada Y., Shimojima A., Chaikittisilp W., Okubo T., Chem. Sci., 2019, 10, 8533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen C.-T., Iyoki K., Hu P., Yamada H., Ohara K., Sukenaga S., Ando M., Shibata H., Okubo T., Wakihara T., J. Am. Chem. Soc., 2021, 143, 10986

    Article  CAS  PubMed  Google Scholar 

  25. http://www.asia.iza-structure.org/IZA-SC/material_tm.php?STC=FER

  26. Vaughan P. A., Acta Crystallogr., 1966, 21, 983

    Article  CAS  Google Scholar 

  27. Pinar A. B., Márquez-Álvarez C., Grande-Casas M., Pérez-Pariente J., J. Catal., 2009, 263, 258

    Article  CAS  Google Scholar 

  28. Khitev Y. P., Kolyagin Y. G., Ivanova I. I., Ponomareva O. A., Thibault-Starzyk F., Gilson J. P., Fernandez C., Fajula F., Micropor. Mesopor. Mat., 2011, 146, 201

    Article  CAS  Google Scholar 

  29. Pellet R. J., Casey D. G., Huang H. M., Kessler R. V., Kuhlman E. J., Oyoung C. L., Sawicki R. A., Ugolini J. R., J. Catal., 1995, 157, 423

    Article  CAS  Google Scholar 

  30. Khitev Y. P., Ivanova I. I., Kolyagin Y. G., Ponomareva O. A., Appl. Catal. A: Gen., 2012, 441/442, 423

    Google Scholar 

  31. Feng X., Zhang P., Fang Y., Charusiri W., Yao J., Gao X., Wei Q., Reubroycharoen P., Vitidsant T., Yoneyama Y., Yang G., Tsubak N. Catalysis Today, 2020, 343, 206

    Article  CAS  Google Scholar 

  32. Xu H., Yu Y., Zhu L., Bian C., Zhai H., Tong J., Wu H., Shen C., Molecules, 2020, 25, 771

    Article  CAS  PubMed Central  Google Scholar 

  33. Xu H., Chen W., Zhang G., Wei P., Wu Q., Zhu L., Meng X., Li X., Fei J., Han S., Zhu Q., Zheng A., Ma Y., Xiao F.-S., J. Mater. Chem. A, 2019, 7, 16671

    Article  CAS  Google Scholar 

  34. Zhang H., Guo Q., Ren L., Yang C., Zhu L., Meng X., Li C., Xiao F.-S., J. Mater. Chem., 2011, 21, 9494

    Article  CAS  Google Scholar 

  35. Xu W., Li J., Li W., Zhang H., Liang B., Zeolites, 1989, 9, 468

    Article  CAS  Google Scholar 

  36. Xu W., Li J., Liu G., J. Fuel Chem. Tech., 1990, 18, 228

    CAS  Google Scholar 

  37. Xu W., Dong J. X., Li J., Ma J., Dou T., Zeolites, 1992, 12, 299

    Article  CAS  Google Scholar 

  38. Li J., Dong J. X., Liu G., Gong S., Wu F., J. Chem. Soc., Chem. Commun., 1993, 659

  39. Dou T., Feng F., Xiao Y., Cao J., Zhong B., J. Nat. Gas. Chem., 1997, 6, 76

    CAS  Google Scholar 

  40. Zhang Y., Dou T., Bao X., Li Y., LI X., Chinese J. Chem. Eng., 2003, 11, 656

    CAS  Google Scholar 

  41. Pan R., Zhang H., Jia M., Tan Q., Dou T., China Surfactant Detergent & Cosmetics, 2012, 42, 30

    CAS  Google Scholar 

  42. Ju X., Fan F., Tian F., Feng Z., Chinese J. Catal., 2010, 31, 788

    CAS  Google Scholar 

  43. Wang L., Tian P., Yuan Y., Yang M., Fan D., Zhou H., Zhu W., Xu S., Liu Z., Micropor. Mesopor. Mat., 2014, 196, 89

    Article  CAS  Google Scholar 

  44. Corma A., Navarro M. T., Rey F., Rius J., Valencia S., Angew. Chem., 2001, 113, 2337

    Article  Google Scholar 

  45. Lee Y., Park M. B., Kim P. S., Vicente A., Fernandez C., Nam I.-S., Hong S. B., ACS Catalysis, 2013, 3, 617

    Article  CAS  Google Scholar 

  46. Xu Q., Yan A., Prog. Cryst. Growth Charact. Mater., 1991, 21, 29

    Article  CAS  Google Scholar 

  47. Kumar M., Li R., Rimer J. D., Chem. Mater., 2016, 28, 1714

    Article  CAS  Google Scholar 

  48. Ren N., Subotic B., Bronic J., Tang Y., Dutour Sikirić M., Mišić T., Svetličić V., Bosnar S., Antonić Jelić T., Chem. Mater., 2012, 24, 1726

    Article  CAS  Google Scholar 

  49. Ju X., Tian F., Wang Y., Fan F., Feng Z., Li C., Inorg. Chem. Front., 2018, 5, 2031

    Article  CAS  Google Scholar 

  50. Dutta P. K., Shieh D. C., Puri M., Zeolites, 1988, 8, 306

    Article  CAS  Google Scholar 

  51. Fan F., Sun K., Feng Z., Xia H., Han B., Lian Y., Ying P., Li C., Chem. Eur. J., 2009, 15, 3268

    Article  CAS  PubMed  Google Scholar 

  52. Sharma S. K., Mammone J. F., Nicol M. F., Nature, 1981, 292, 140

    Article  CAS  Google Scholar 

  53. Büchner C., Liu L., Stuckenholz S., Burson K. M., Lichtenstein L., Heyde M., Gao H.-J., Freund H.-J., J. Non-Cryst. Solids, 2016, 435, 40

    Article  Google Scholar 

  54. Long Y., Ma M., Sun Y., Jiang H., J. Incl. Phenom. Macro., 2000, 37, 103

    Article  CAS  Google Scholar 

  55. Jansen J. C., van der Gaag F. J., van Bekkum H., Zeolites, 1984, 4, 369

    Article  CAS  Google Scholar 

  56. Kadja G. T. M., Kadir I. R., Fajar A. T. N., Suendo V., Mukti R. R., RSC Adv., 2020, 10, 5304

    Article  CAS  Google Scholar 

  57. Al-Oweini R., El-Rassy H., J. Mol. Struct., 2009, 919, 140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No.2017YFB0702800) and the National Natural Science Foundation of China (Nos.21972168, 21802168).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhendong Wang or Weimin Yang.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Fu, W., Liu, C. et al. Synthesis of FER Zeolite Using 4-(Aminomethyl)pyridine as Structure-directing Agent. Chem. Res. Chin. Univ. 38, 243–249 (2022). https://doi.org/10.1007/s40242-021-1404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1404-z

Keywords

Navigation