Skip to main content
Log in

Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Many researchers, however, found that (1) the flow of both liquid and gas through nanoscale pores is one to even seven orders of magnitude faster than that would be predicted from the classic Newton’s mechanic theories, such as the Hagen-Poiseuille equation, the Bernoulli’s principle, the Knudsen theory; (2) the seeming contradiction that K+ channels conduct K+ ions at maximal throughput rates while not permeating slightly smaller Na+ ions, which have perplexed scientists for decades. Herein we propose a possible explanation for the above phenomena based on the Wave-Particle Dualism. The quantum effect on ultrafast flow could possibly provide a new perspective for studying the nature of the ion and molecule channels, which are the backbones for the biology, and possibly promote the development of new methods for energy conversion, desalination of sea water and even information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lozada-Hidalgo M., Hu S., Marshall O., Mishchenko A., Geim A. K., Science, 2016, 351, 68

    Article  CAS  Google Scholar 

  2. Shendure J., Balasubramanian S., Church G. M., Gilbert W., Rogers J., Schloss J. A., Waterston R. H., Nature, 2017, 550, 345

    Article  CAS  Google Scholar 

  3. Howorka S., Siwy Z., Chem. Soc. Rev., 2009, 38, 2360

    Article  CAS  Google Scholar 

  4. Feng J., Graf M., Liu K., Ovchinnikov D., Dumcenco D., Heiranian M., Nandigana V., Narayana R., Nature, 2016, 536, 197

    Article  CAS  Google Scholar 

  5. Jain M., Koren S., Miga K. H., Quick J., Rand A. C., Sasani T. A., Tyson J. R., Beggs A. D., Dilthey A. T., Fiddes I. T., Malla S., Marriott H., Nieto T., O’Grady J., Olsen H. E., Pedersen B. S., Rhie A., Richardson H., Quinlan A. R., Snutch T. P., Tee L., Paten B., Phillippy A. M., Simpson J. T., Loman N. J., Loose M., Nat. Biotechnol., 2018, 36, 338

    Article  CAS  Google Scholar 

  6. Majumder M., Chopra N., Andrews R., Hinds B. J., Nature, 2005, 438, 44

    Article  CAS  Google Scholar 

  7. Holt J. K., Park H. G., Wang Y. M., Stadermann M., Artyukhin A. B., Grigoropoulos C. P., Noy A., Bakajin O., Science, 2006, 312, 1034

    Article  CAS  Google Scholar 

  8. Secchi E., Marbach S., Nigues A., Stein D., Siria A., Bocquet L., Nature, 2016, 537, 210

    Article  CAS  Google Scholar 

  9. Wu K., Chen Z., Li J., Li X., Xu J., Dong X., Proc. Natl. Acad. Sci. USA, 2017, 114, 3358

    Article  CAS  Google Scholar 

  10. Hummer G., Rasaiah J. C., Noworyta J. P., Nature, 2001, 414, 188

    Article  CAS  Google Scholar 

  11. Keerthi A., Geim A. K., Janardanan A., Rooney A. P., Esfandiar A., Hu S., Dar S. A., Grigorieva I. V., Haigh S. J., Wang F. C., Nature, 2018, 558, 420

    Article  CAS  Google Scholar 

  12. Hu S., Gopinadhan K., Rakowski A., Neek-Amal M., Lozada-Hidalgo M., Nat. Nanotechnol., 2018, 13, 468

    Article  CAS  Google Scholar 

  13. Sofos F. D., Karakasidis T. E., Liakopoulos A., Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 2009, 79, 26305

    Article  Google Scholar 

  14. Esfandiar A., Radha B., Wang F. C., Yang Q., Hu S., Garaj S., Nair R. R., Geim A. K., Gopinadhan K., Science, 2017, 358, 511

    Article  CAS  Google Scholar 

  15. Tunuguntla R. H., Henley R. Y., Yao Y. C., Pham T. A., Wanunu M., Noy A., Science, 2017, 357, 792

    Article  CAS  Google Scholar 

  16. Radha B., Esfandiar A., Wang F. C., Rooney A. P., Gopinadhan K., Keerthi A., Mishchenko A., Janardanan A., Blake P., Fumagalli L., Lozada-Hidalgo M., Garaj S., Haigh S. J., Grigorieva I. V., Wu H. A., Geim A. K., Nature, 2016, 538, 222

    Article  CAS  Google Scholar 

  17. Nair R. R., Wu H. A., Jayaram P. N., Grigorieva I. V., Geim A. K., Science, 2012, 335, 442

    Article  CAS  Google Scholar 

  18. Karan S., Samitsu S., Peng X., Kurashima K., Ichinose I., Science, 2012, 335, 444

    Article  CAS  Google Scholar 

  19. Peng X., Jin J., Nakamura Y., Ohno T., Ichinose I., Nat. Nanotechnol., 2009, 4, 353

    Article  CAS  Google Scholar 

  20. Whitby M., Cagnon L., Thanou M., Quirke N., Nano. Lett., 2008, 8, 2632

    Article  CAS  Google Scholar 

  21. Thomas J. A., McGaughey A. J. H., Nano. Lett., 2008, 8, 2788

    Article  CAS  Google Scholar 

  22. Kalra A., Garde S., Hummer G., Proceedings of the National Academy of Sciences: PNAS, 2003, 100, 10175

    Article  CAS  Google Scholar 

  23. Skoulidas A. I., Ackerman D. M., Johnson J. K., Sholl D. S., Phys. Rev. Lett., 2002, 89, 185901

    Article  Google Scholar 

  24. Sokhan V. P., Nicholson D., Quirke N., the Journal of Chemical Physics, 2002, 117, 8531

    Article  CAS  Google Scholar 

  25. Kratochvil H. T., Carr J. K., Matulef K., Annen A. W., Li H., Maj M., Ostmeyer J., Serrano A. L., Raghuraman H., Moran S. D., Science, 2016, 353, 1040

    Article  CAS  Google Scholar 

  26. Kopec W., Köpfer D. A., Vickery O. N., Bondarenko A. S., Jansen T. L. C., De G. B.L., Zachariae U., Nat. Chem., 2018, 10, 813

    Article  CAS  Google Scholar 

  27. Zhao R., Li L., Yang S., Bao W., Xia Y., Ashby P., Wang Y., Zhang X., Science, 2019, 364, 984

    Article  CAS  Google Scholar 

  28. Briggeman M., Tomczyk M., Tian B., Lee H., Lee J. W., He Y., Tylan-Tyler A., Huang M., Eom C. B., Pekker D., Mong P. S. K., Irvinl P., Levy J., Science, 2020, 367, 769

    Article  CAS  Google Scholar 

  29. Robertson H. P., Phys. Rev., 1929, 34, 163

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22090050, 22090053, 21974126, 21874121, 51803194), the Zhejiang Provincial Natural Science Foundation, China(No.LY19B030001), the Open-end Funds from the Engineering Research Center of Nano-Geomaterials of Ministry of Education, China (No. NGM2019KF013) and the Fundamental Research Funds for National Universities, China University of Geosciences(Wuhan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Xia.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Ma, Q., Liu, R. et al. Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow. Chem. Res. Chin. Univ. 38, 957–960 (2022). https://doi.org/10.1007/s40242-021-1290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1290-4

Keywords

Navigation