Skip to main content
Log in

Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Hundreds of C60 derivatives stand out as electrontransporting materials(ETMs), for example, in perovskite solar cells(PSCs), due to their properties on electron extraction or defect passivation. However, it still lacks of guidelines to update C60-based ETMs with excellent photoelectric properties. In this work, crystallographic data of eight C60-based ETMs, including pristine C60 and the well-known PCBM as well as six newly synthesized fullerenes, are analyzed to establish the connections between derivatized structures and photoelectric properties for the typical carbon cluster of C60. In terms of packing centroid-centroid distance between neighboring carbon cages, the crystallographic data are useful for probing photoelectric properties, such as electrochemical properties, electron mobility and photovoltaic performances, and therefore facilitate to design novel C60-based ETMs for PSCs with high performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castro E., Murillo J., Fernandez-Delgado O., Echegoyen L., J. Mater. Chem. C, 2018, 6, 2635

    Article  CAS  Google Scholar 

  2. Cui C., Li Y., Li Y., Adv. Energy Mater., 2017, 7, 1601251

    Article  Google Scholar 

  3. Jia L., Chen M., Yang S., Mater. Chem. Front., 2020, 4, 2256

    Article  CAS  Google Scholar 

  4. Litvin A. P., Zhang X., Berwick K., Fedorov A. V., Zheng W., Baranov A. V., Renew. Sustain. Energy Rev., 2020, 124, 109774

    Article  CAS  Google Scholar 

  5. Kennedy R. D., Ayzner A. L., Wanger D. D., Day C. T., Halim M., Khan S. I., Tolbert S. H., Schwartz B. J., Rubin Y., J. Am. Chem. Soc., 2008, 130, 17290

    Article  CAS  Google Scholar 

  6. Li C. Z., Chueh C. C., Yip H. L., Ding F., Li X., Jen A. K. J., Adv. Mater., 2013, 25, 2457

    Article  CAS  Google Scholar 

  7. Sun X., Ji L. Y., Chen W. W., Guo X., Wang H. H., Lei M., Wang Q., Li Y. F., J. Mater. Chem. A, 2017, 5, 20720

    Article  CAS  Google Scholar 

  8. Mackenzie R. C., Frost J. M., Nelson J., J. Chem. Phys., 2010, 132, 064904

    Article  Google Scholar 

  9. Tian C., Betancourt-Solis G., Nan Z., Liu K., Lin K., Lu J., Xie L., Echegoyen L., Wei Z., Sci. Bull., 2021, 66, 339

    Article  CAS  Google Scholar 

  10. Tummala N. R., Aziz S. G., Coropceanu V., Bredas J. -L., J. Mater. Chem. C, 2018, 6, 3642

    Article  CAS  Google Scholar 

  11. Wu W.-P., Deng L.-L., Li X., Zhao Y., Sci. Bull., 2016, 61(2), 139

    Article  CAS  Google Scholar 

  12. Taufique M. F. N., Mortuza S. M., Banerjee S., J. Phys. Chem. C, 2016, 120, 22426

    Article  CAS  Google Scholar 

  13. Tummala N. R., Elroby S. A., Aziz S. G., Risko C., Coropceanu V., Brédas J.-L., J. Phys. Chem. C, 2016, 120, 17242

    Article  CAS  Google Scholar 

  14. Fernandez-Delgado O., Castro E., Ganivet C. R., Fosnacht K., Liu F., Mates T., Liu Y., Wu X., Echegoyen L., ACS Appl. Mater. Interfaces, 2019, 11, 34408

    Article  CAS  Google Scholar 

  15. Xia J., Luo J., Yang H., Zhao F., Wan Z., Malik H. A., Shi Y., Han K., Yao X., Jia C., Adv. Funct. Mater., 2020, 30, 2001418

    Article  CAS  Google Scholar 

  16. Murgatroyd P. N., J. Phys. D: Appl. Phys., 1970, 3, 151

    Article  Google Scholar 

  17. Khenkin M. V., Katz E. A., Abate A., Bardizza G., Berry J. J., Brabec C., Brunetti F., Bulović V., Burlingame Q., Di Carlo A., Cheacharoen R., Cheng Y.-B., Colsmann A., Cros S., Domanski K., Dusza M., Fell C. J., Forrest S. R., Galagan Y., Di Girolamo D., Grätzel M., Hagfeldt A., von Hauff E., Hoppe H., Kettle J., Köbler H., Leite M. S., Liu S., Loo Y.-L., Luther J. M., Ma C.-Q., Madsen M., Manceau M., Matheron M., McGehee M., Meitzner R., Nazeeruddin M. K., Nogueira A. F., Odabaşı Ç., Osherov A., Park N.-G., Reese M. O., De Rossi F., Saliba M., Schubert U. S., Snaith H. J., Stranks S. D., Tress W., Troshin P. A., Turkovic V., Veenstra S., Visoly-Fisher I., Walsh A., Watson T., Xie H., Yıldırım R., Zakeeruddin S. M., Zhu K., Lira-Cantu M., Nat. Energy, 2020, 5, 35

    Article  Google Scholar 

  18. Kiermasch D., Gil-Escrig L., Bolink H. J., Tvingstedt K., Joule, 2019, 3, 16

    Article  CAS  Google Scholar 

  19. Deng L.-L., Xie S.-Y., Gao F., Adv. Electron. Mater., 2018, 4, 1700435

    Article  Google Scholar 

  20. Nardes A. M., Ferguson A. J., Whitaker J. B., Larson B. W., Larsen R. E., Maturová K., Graf P. A., Boltalina O. V., Strauss S. H., Kopidakis N., Adv. Funct. Mater., 2012, 22, 4115

    Article  CAS  Google Scholar 

  21. Li M. M., Wang Y. B., Zhang Y., Wang W., J. Phys. Chem. A, 2016, 120, 5766

    Article  CAS  Google Scholar 

  22. Kozhemyakina N. V., Amsharov K. Y., Nuss J., Jansen M., Chem. Euro. J., 2011, 17, 1798

    Article  CAS  Google Scholar 

  23. Rispens M. T., Meetsma A., Rittberger R., Brabec C. J., Sariciftci N. S., Hummelen J. C., Chem. Commun., 2003, 17, 2116

    Article  Google Scholar 

  24. Troyanov S. I., Burtsev A. V., Kemnitz E., Crystallogr. Rep., 2009, 54, 242

    Article  CAS  Google Scholar 

  25. Li S. H., Xing Z., Wu B. S., Chen Z. C., Yao Y. R., Tian H. R., Li M. F., Yun D. Q., Deng L. L., Xie S. Y., Huang R. B., Zheng L. S., ACS Appl. Mater. Interfaces, 2020, 12, 20733

    Article  CAS  Google Scholar 

  26. Bässler H., Phys. Stat. Sol. (B), 1993, 175, 15

    Article  Google Scholar 

  27. Das S., Preiß J., Plentz J., Brückner U., von der Lühe M., Eckardt O., Dathe A., Schacher F. H., Täuscher E., Ritter U., Csáki A., Andrä G., Dietzek B., Presselt M., Adv. Energy Mater., 2018, 8, 1801737

    Article  Google Scholar 

  28. Chancellor C. J., Bowles F. L., Franco J. U., Pham D. M., Rivera M., Sarina E. A., Ghiassi K. B., Balch A. L., Olmstead M. M., J. Phys. Chem. A, 2018, 122, 9626

    Article  CAS  Google Scholar 

  29. Xiao Z., Geng X., He D., Jia X., Ding L., Energy Environ. Sci., 2016, 9, 2114

    Article  CAS  Google Scholar 

  30. Herranz M. Á., Diederich F., Echegoyen L., Euro. J. Org. Chem., 2004, 2004, 2299

    Article  Google Scholar 

  31. Zhang W., Wang Y. C., Li X., Song C., Wan L., Usman K., Fang J., Adv. Sci., 2018, 5, 1800159

    Article  Google Scholar 

  32. Pal A., Wen L. K., Jun C. Y., Jeon I., Matsuo Y., Manzhos S., Phys. Chem. Chem. Phys., 2017, 19, 28330

    Article  CAS  Google Scholar 

  33. Tuladhar S. M., Sims M., Kirkpatrick J., Maher R. C., Chatten A. J., Bradley D. D. C., Nelson J., Etchegoin P. G., Nielsen C. B., Massiot P., George W. N., Steinke J. H. G., Phys. Rev. B, 2009, 79(3), 035201

    Article  Google Scholar 

  34. Wu W. Q., Wang Q., Fang Y., Shao Y., Tang S., Deng Y., Lu H., Liu Y., Li T., Yang Z., Gruverman A., Huang J., Nat. Commun., 2018, 9, 1625

    Article  Google Scholar 

  35. Luo Z., Wu F., Zhang T., Zeng X., Xiao Y., Liu T., Zhong C., Lu X., Zhu L., Yang S., Yang C., Angew. Chem. Int. Ed., 2019, 58, 8520

    Article  CAS  Google Scholar 

  36. Deng L.-L., Xie S.-L., Yuan C., Liu R.-F., Feng J., Sun L.-C., Lu X., Xie S.-Y., Huang R.-B., Zheng L.-S., Sol. Energy Mater. Sol. Cells, 2013, 111, 193

    Article  CAS  Google Scholar 

  37. Liang P. W., Chueh C. C., Williams S. T., Jen A. K. Y., Adv. Energy Mater., 2015, 5, 1402321

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Nos.92061122, 92061204, 21721001), the China Postdoctoral Science Foundation(No.2020M680197), and the Natural Science Foundation of Guangxi Province of China(No.2020GXNSFBA159037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Yuan Xie.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Material

40242_2021_1264_MOESM1_ESM.pdf

Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Li, SH., Xu, PY. et al. Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells. Chem. Res. Chin. Univ. 38, 75–81 (2022). https://doi.org/10.1007/s40242-021-1264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1264-6

Keywords

Navigation