Skip to main content
Log in

Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The current study has obtained excellent potential nonlinear optical(NLO) materials by combining density functional theory methods with sum-over-states model to predict the second order NLO properties of helical graphene nanoribbons(HGNs) through introducing azulene defects or/and BN units. The introduction of these functional groups deforms the pristine HGN (compression or tension) and enhances obviously the static first hyperpolarizability(〈β0〉) of system by up to two orders of magnitude. The tensor components along the helical axis of HGNs play a dominant role in the total 〈β0〉. The azulene defects and the BN units polarize the pristine HGN to different degrees, and the azulenes and contiguous benzenes are involved in the major electron excitations with significant contributions to 〈β0〉 but the BN units are not. The BN-doped chiral HGNs have good kinetic stability and strong second order NLO properties(6.84 × 105 × 10−30 esu), and can be a potential candidate of high-performance second order NLO materials. The predicted two-dimensional second order NLO spectra provide useful information for further exploration of those helicenes for electro-optic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fanti M., Orlandi G., Zerbetto F., J. Am. Chem. Soc., 1995, 117, 6101

    Article  CAS  Google Scholar 

  2. Wang J., Chen Y., Blau W. J., J. Mater. Chem., 2009, 19, 7425

    Article  CAS  Google Scholar 

  3. Chen Y., Bai T., Dong N., Fan F., Zhang S., Zhuang X., Sun J., Zhang B., Zhang X., Wang J., Blau W. J., Prog. Mater. Sci., 2016, 84, 118

    Article  CAS  Google Scholar 

  4. Yoshikawa N., Tamaya T., Tanaka K., Science, 2017, 356, 736

    Article  CAS  PubMed  Google Scholar 

  5. Deb J., Paul D., Sarkar U., J. Phys. Chem. A, 2020, 124, 1312

    Article  CAS  PubMed  Google Scholar 

  6. Shen Y., Chen C.-F., Chem. Rev., 2012, 112, 1463

    Article  CAS  PubMed  Google Scholar 

  7. Meisenheimer J., Witte K., Chem. Ber., 1903, 36, 4153

    Article  CAS  Google Scholar 

  8. Murguly E., McDonald R., Branda N. R., Org. Lett., 2000, 2, 3169

    Article  CAS  PubMed  Google Scholar 

  9. Takenaka N., Sarangthem R. S., Captain B., Angew. Chem. Int. Ed., 2008, 47, 9708

    Article  CAS  Google Scholar 

  10. Hassey R., Swain E. J., Hammer N. I., Venkataraman D., Barnes M. D., Science, 2006, 314, 1437

    Article  CAS  PubMed  Google Scholar 

  11. Reetz M.T., Sostmann S., Tetrahedron, 2001, 57, 2515

    Article  CAS  Google Scholar 

  12. Botek E., Champagne B., Turki M., André J.-M., J. Chem. Phys., 2004, 120, 2042

    Article  CAS  PubMed  Google Scholar 

  13. Xu X., Liu B., Zhao W., Jiang Y., Liu L., Li W., Zhang G., Tian W. Q., Nanoscale, 2017, 9, 9693

    Article  CAS  PubMed  Google Scholar 

  14. Gingras M., Chem. Soc. Rev., 2013, 42, 1051

    Article  CAS  PubMed  Google Scholar 

  15. Botek E., André J.-M., Champagne B., Verbiest T., Persoons A., J. Chem. Phys., 2005, 122, 234713

    Article  PubMed  CAS  Google Scholar 

  16. Botek E., Spassova M., Champagne B., Asselberghs I., Persoons A., Clays K., Chem. Phys. Lett., 2005, 412, 274

    Article  CAS  Google Scholar 

  17. Bossi A., Licandro E., Maiorana S., Rigamonti C., Righetto S., Stephenson G. R., Spassova M., Botek E., Champagne B., J. Phys. Chem. C, 2008, 112, 7900

    Article  CAS  Google Scholar 

  18. Wheland G. W., Mann D. E., J. Chem. Phys., 1949, 17, 264

    Article  CAS  Google Scholar 

  19. Yazyev O. V., Louie S. G., Nat. Mater., 2010, 9, 806

    Article  CAS  PubMed  Google Scholar 

  20. Wei Y., Wu J., Yin H., Shi X., Yang R., Dresselhaus M., Nat. Mater., 2012, 11, 759

    Article  CAS  PubMed  Google Scholar 

  21. He Y.-Y., Chen J., Zheng X.-L., Xu X., Li W.-Q., Yang L., Tian W. Q., ACS Appl. Nano Mater., 2019, 2, 1648

    Article  CAS  Google Scholar 

  22. Yang C.-C., He Y.-Y., Zheng X.-L., Chen J., Yang L., Li W.-Q., Tian W. Q., J. Mater. Chem. C, 2020, 8, 1879

    Article  CAS  Google Scholar 

  23. Ferrand A., Siaj M., Claverie J. P., ACS Appl. Nano Mater., 2020, 3, 7305

    Article  CAS  Google Scholar 

  24. Paul D., Deb J., Sarkar U., ChemistrySelect, 2020, 5, 6987

    Article  CAS  Google Scholar 

  25. Hatakeyama T., Hashimoto S., Oba T., Nakamura M., J. Am. Chem. Soc., 2012, 134, 19600

    Article  CAS  PubMed  Google Scholar 

  26. Parthenopoulos D. A., Rentzepis P. M., Science, 1989, 245, 843

    Article  CAS  PubMed  Google Scholar 

  27. Cotter D., Manning R. J., Blow K. J., Ellis A. D., Kelly A. E., Nesset D., Phillips I. D., Poustie A. J., Rogers D. C., Science, 1999, 286, 1523

    Article  CAS  PubMed  Google Scholar 

  28. Kriegel I., Urso C., Viola D., de Trizio L., Scotognella F., Cerullo G., Manna L., J. Phys. Chem. Lett., 2016, 7, 3873

    Article  CAS  PubMed  Google Scholar 

  29. Lin Z., Huang L., Xu Z. T., Li X., Zentgraf T., Wang Y., Adv. Opt. Mater., 2019, 7, 1900782

    Article  CAS  Google Scholar 

  30. Xiao X., Pedersen S. K., Aranda D., Yang J., Wiscons R. A., Pittelkow M., Steigerwald M. L., Santoro F., Schuster N. J., Nuckolls C., J. Am. Chem. Soc., 2021, 143, 983

    Article  CAS  PubMed  Google Scholar 

  31. Ma J., Fu Y., Dmitrieva E., Liu F., Komber H., Hennersdorf F., Popov A. A., Weigand J. J., Liu J., Feng X., Angew. Chem. Int. Ed., 2020, 59, 5637

    Article  CAS  Google Scholar 

  32. Ogawa N., Yamaoka Y., Takikawa H., Yamada K., Takasu K., J. Am. Chem. Soc., 2020, 142, 13322

    Article  CAS  PubMed  Google Scholar 

  33. Hehre W. J., Ditchfield R., Pople J. A., J. Chem. Phys., 1972, 56, 2257

    Article  CAS  Google Scholar 

  34. Hariharan P. C., Pople J. A., Theor. Chim. Acta, 1973, 28, 213

    Article  CAS  Google Scholar 

  35. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865

    Article  CAS  PubMed  Google Scholar 

  36. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1997, 78, 1396

    Article  CAS  Google Scholar 

  37. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery, J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford CT, 2013

    Google Scholar 

  38. Budyka M. F., Zyubina T. S., Ryabenko A. G., Lin S. H., Mebel A. M., Chem. Phys. Lett., 2005, 407, 266

    Article  CAS  Google Scholar 

  39. Ridley J., Zerner M., Theor. Chim. Acta, 1973, 32, 111

    Article  CAS  Google Scholar 

  40. Yanai T., Tew D. P., Handy N. C., Chem. Phys. Lett., 2004, 393, 51

    Article  CAS  Google Scholar 

  41. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46, 6671

    Article  CAS  Google Scholar 

  42. Becke A. D., J. Chem. Phys., 1993, 98, 5648

    Article  CAS  Google Scholar 

  43. Tian W. Q., LinSOSProNLO, V1.01, Registration No.2017SR526488 and Classification No. 30219-7500, Copyright Protection Center of China, Beijing, China

  44. Tian W. Q., J. Comput. Chem., 2012, 33, 466

    Article  CAS  PubMed  Google Scholar 

  45. Orr B. J., Ward J. F., Mol. Phys., 1971, 20, 513

    Article  CAS  Google Scholar 

  46. Bishop D. M., J. Chem. Phys., 1994, 100, 6535

    Article  CAS  Google Scholar 

  47. Beljonne D., Cornil J., Shuai Z., Brédas J. L., Rohlfing F., Bradlley D. D. C., Torruellas W. E., Ricci V., Stegeman G. I., Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 55, 1505

    Article  CAS  Google Scholar 

  48. Lalama S. J., Garito A. F., Phys. Rev. A: At., Mol., Opt. Phys., 1979, 20, 1179

    Article  CAS  Google Scholar 

  49. Priyadarshy S., Therien M. J., Beratan D. N., J. Am. Chem. Soc., 1996, 118, 1504

    Article  Google Scholar 

  50. Isborn C. M., Leclercq A., Vila F. D., Dalton L. R., Brédas J. L., Eichinger B. E., Robinson B. H., J. Phys. Chem. A, 2007, 111, 1319

    Article  CAS  PubMed  Google Scholar 

  51. Frattarelli D., Schiavo M., Facchetti A., Ratner M. A., Marks T. J., J. Am. Chem. Soc., 2009, 131, 12595

    Article  CAS  PubMed  Google Scholar 

  52. Yang C.-C., Zheng X.-L., Tian W. Q., Li W.-Q., Yang L., Phys. Chem. Chem. Phys., 2021, DOI: https://doi.org/10.1039/D1CP00383F

  53. Zhang X., Zhao M., Sci. Rep., 2014, 4, 5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salzner U., Lagowski J. B., Pickup P. G., Poirier R. A., J. Comput. Chem., 1997, 18, 1943

    Article  CAS  Google Scholar 

  55. Xiao H., Tahir-Kheli J., Goddard W. A., III, J. Phys. Chem. Lett., 2011, 2, 212

    Article  CAS  Google Scholar 

  56. Chen K.-C., Zheng X.-L., Yang C.-C., Tian W. Q., Li W.-Q., Yang L., Chem. Res. Chinese. Universties., 2021, DOI: https://doi.org/10.1007/s40242-021-1090-x

  57. Pegu D., Deb J., Van Alsenoy C., Sarkar U., Spectrosc. Lett., 2017, 50, 232

    Article  CAS  Google Scholar 

  58. Pegu D., Deb J., Saha S. K., Paul M. K., Sarkar U., J. Mol. Struct., 2018, 1160, 167

    Article  CAS  Google Scholar 

  59. Deb J., Paul D., Sarkar U., AIP Conf. Proc., 2019, 2115, 030169

    Article  CAS  Google Scholar 

  60. Zyss J., Ledoux I., Chem. Rev., 1994, 94, 77

    Article  CAS  Google Scholar 

  61. Castet F., Bogdan E., Plaquet A., Ducasse L., Champagne B., Rodriguez V., J. Chem. Phys., 2012, 136, 024506

    Article  PubMed  CAS  Google Scholar 

  62. Lepetit L., Joffre M., Opt. Lett., 1996, 21, 564

    Article  CAS  PubMed  Google Scholar 

  63. Lepetit L., Chériaux G., Joffre M., J. Nonlinear Opt. Phys. Mater., 1996, 5, 465

    Article  CAS  Google Scholar 

  64. Chen J., Wang M. Q., Zhou X., Yang L., Li W.-Q., Tian W. Q., Phys. Chem. Chem. Phys., 2017, 19, 29315

    Article  CAS  PubMed  Google Scholar 

  65. Coe B. J., Rusanova D., Joshi V. D., Sánchez S., Vávra J., Khobragade D., Severa L., Císařová I., Šaman D., Pohl R., Clays K., Depotter G., Brunschwig B. S., Teplý F., J. Org. Chem., 2016, 81, 1912

    Article  CAS  PubMed  Google Scholar 

  66. Verbiest T., Elshocht S. V., Kauranen M., Hellemans L., Snauwaert J., Nuckolls C., Katz T. J., Persoons A., Science, 1998, 282, 913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21673025), the Open Projects of the Key Laboratory of Polyoxometalate Science of Ministry of Education(NENU), China and the Project of the State Key Laboratory of Supramolecular Structure and Materials(JLU), China (No.SKLSSM2021020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Quan Tian.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic Supplementary Material

40242_2021_1213_MOESM1_ESM.pdf

Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Liu, L., Yang, C. et al. Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units. Chem. Res. Chin. Univ. 38, 974–984 (2022). https://doi.org/10.1007/s40242-021-1213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1213-4

Keywords

Navigation