Skip to main content

Influence of SAM Quality on the Organic Semiconductor Thin Film Gas Sensors

Abstract

Gas sensors based on organic semiconductors receive tremendous attentions owing to their advantages on high selectivity and room temperature operation. However, until now, most organic semiconductor based sensors still suffered from problems, such as low sensitivity, slow response/recovery speed and poor stability. In addition, a clear correlation between the sensing performance and the film property is still absent. Herein, we report the investigation on sensing performance of a series of organic films with various morphologies. By simply adjusting the quality of self-assembled monolayer(SAM) on the silicon wafer surface, we obtain organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) films with varied morphologies and different charge transport abilities. The film with a small grain size and a continuous morphology presents the highest sensing performance to NO2, with a sensitivity up to 730%/ppm(ppm=parts per million, volume ratio). We thus reveal that the high sensitivity of the organic film is evident related with the charge transport ability and initial conductivity of the films, as well as the morphologies of both modification layer and the active films.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Sirringhaus H., Adv. Mater., 2014, 26, 1319

    Article  CAS  Google Scholar 

  2. [2]

    Sirringhaus H., Tessler N., Friend R. H., Science, 1998, 280, 1741

    Article  CAS  Google Scholar 

  3. [3]

    Baude P. F., Ender D. A., Haase M. A., Kelley T. W., Muyres D. V., Theiss S. D., Appl. Phys. Lett., 2003, 82, 3964

    Article  CAS  Google Scholar 

  4. [4]

    Steudel S., Myny K., Arkhipov V., Deibel C., de Vusser S., Genoe J., Heremans P., Nat. Mater., 2005, 4, 597

    Article  CAS  Google Scholar 

  5. [5]

    Zhang C., Chen P., Hu W., Chem. Soc. Rev., 2015, 44, 2087

    Article  CAS  Google Scholar 

  6. [6]

    Someya T., Dodabalapur A., Huang J., See K. C., Katz H. E., Adv. Mater., 2010, 22, 3799

    Article  CAS  Google Scholar 

  7. [7]

    Lin P., Yan F., Adv. Mater., 2012, 24, 34

    Article  CAS  Google Scholar 

  8. [8]

    Torsi L., Magliulo M., Manoli K., Palazzo G., Chem. Soc. Rev., 2013, 42, 8612

    Article  CAS  Google Scholar 

  9. [9]

    Khan H. U., Jang J., Kim J. J., Knoll W., J. Am. Chem. Soc., 2011, 133, 2170

    Article  CAS  Google Scholar 

  10. [10]

    Li H., Shi W., Song J., Jang H. J., Dailey J., Yu J., Katz H. E., Chem. Rev., 2019, 119, 3

    Article  CAS  Google Scholar 

  11. [11]

    Beaujuge P. M., Frechet J. M., J. Am. Chem. Soc., 2011, 133, 20009

    Article  CAS  Google Scholar 

  12. [12]

    Garg K., Singh A., Majumder C., Nayak S. K., Aswal D. K., Gupta S. K., Chattopadhyay S., Org. Electron., 2013, 14, 1189

    Article  CAS  Google Scholar 

  13. [13]

    Di C. A., Liu Y. Q., Yu G., Zhu D. B., Acc. Chem. Res., 2009, 42, 1573

    Article  CAS  Google Scholar 

  14. [14]

    Ji S., Wang H., Wang T., Yan D., Adv. Mater., 2013, 25, 1755

    Article  CAS  Google Scholar 

  15. [15]

    Wang X., Ji S., Wang H., Yan D., Org. Electron., 2011, 12, 2230

    Article  CAS  Google Scholar 

  16. [16]

    Shaymurat T., Tang Q., Tong Y., Dong L., Liu Y., Adv. Mater., 2013, 25, 2269

    Article  CAS  Google Scholar 

  17. [17]

    Huang W., Besar K., LeCover R., Rule A. M., Breysse P. N., Katz H. E., J. Am. Chem. Soc., 2012, 134, 14650

    Article  CAS  Google Scholar 

  18. [18]

    Lu J., Liu D., Zhou J., Chu Y., Chen Y., Wu X., Huang J., Adv. Funct. Mater., 2017, 27, 1700018

    Article  CAS  Google Scholar 

  19. [19]

    Wu S., Wang G., Xue Z., Ge F., Zhang G., Lu H., Qiu L., ACS Appl. Mater. Interfaces, 2017, 9, 14974

    Article  CAS  Google Scholar 

  20. [20]

    Huang W., Zhuang X., Melkonyan F. S., Wang B., Zeng L., Wang G., Han S., Bedzyk M. J., Yu J., Marks T. J., Facchetti A., Adv. Mater., 2017, 29, 1701706

    Article  CAS  Google Scholar 

  21. [21]

    Wang Z., Huang L., Zhu X., Zhou X., Chi L., Adv. Mater., 2017, 29, 1703192

    Article  CAS  Google Scholar 

  22. [22]

    Jiang L., Dong H., Meng Q., Li H., He M., Wei Z., He Y., Hu W., Adv. Mater., 2011, 23, 2059

    Article  CAS  Google Scholar 

  23. [23]

    Minari T., Kano M., Miyadera T., Wang S.-D., Aoyagi Y., Seto M., Nemoto T., Isoda S., Tsukagoshi K., Appl. Phys. Lett., 2008, 92, 173301

    Article  CAS  Google Scholar 

  24. [24]

    Virkar A., Mannsfeld S., Oh J. H., Toney M. F., Tan Y. H., Liu G. Y., Scott J. C., Miller R., Bao Z., Adv. Funct. Mater., 2009, 19, 1962

    Article  CAS  Google Scholar 

  25. [25]

    Ito Y., Virkar A. A., Mannsfeld S., Oh J. H., Toney M., Locklin J., Bao Z. A., J. Am. Chem. Soc., 2009, 131, 9396

    Article  CAS  Google Scholar 

  26. [26]

    Ong B. S., Wu Y. L., Liu P., Gardner S., J. Am. Chem. Soc., 2004, 126, 3378

    Article  CAS  Google Scholar 

  27. [27]

    Kobayashi S., Nishikawa T., Takenobu T., Mori S., Shimoda T., Mitani T., Shimotani H., Yoshimoto N., Ogawa S., Iwasa Y., Nat. Mater., 2004, 3, 317

    Article  CAS  Google Scholar 

  28. [28]

    Giri G., Verploegen E., Mannsfeld S. C., Atahan-Evrenk S., Kim D. H., Lee S. Y., Becerril H. A., Aspuru-Guzik A., Toney M. F., Bao Z., Nature, 2011, 480, 504

    Article  CAS  Google Scholar 

  29. [29]

    Anthony J. E., Brooks J. S., Eaton D. L., Parkin S. R., J. Am. Chem. Soc., 2001, 123, 9482

    Article  CAS  Google Scholar 

  30. [30]

    Zhu X. F., Zhang X. D., Huang L. Z., Wang Z., Chi L. F., Chem. Res. Chinese Universities, 2018, 34(1), 151

    Article  CAS  Google Scholar 

  31. [31]

    Lee H. S., Kim D. H., Cho J. H., Hwang M., Jang Y., Cho K., J. Am. Chem. Soc., 2008, 130, 10556

    Article  CAS  Google Scholar 

  32. [32]

    Kim D. H., Lee H. S., Yang H., Yang L., Cho K., Adv. Funct. Mater., 2008, 18, 1363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China(No.2018YFE0200700), the National Natural Science Foundation of China(Nos.51773143, 51821002), and the Fund of the German-Chinese Transregional Collaborative Research Centre TRR 61(No.21661132006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lizhen Huang or Lifeng Chi.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, Z., Lu, J. et al. Influence of SAM Quality on the Organic Semiconductor Thin Film Gas Sensors. Chem. Res. Chin. Univ. (2021). https://doi.org/10.1007/s40242-021-1167-6

Download citation

Keywords

  • Self-assembled monolayer
  • Gas sensor
  • Organic semiconductor
  • Thin film growth