Skip to main content
Log in

Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

DNA nanotechnology utilizes DNA double strands as building units for self-assembly of DNA nanostructures. The specific base-pairing interaction between DNA molecules is the basis of these assemblies. After decades of development, this technology has been able to construct complex and programmable structures. With the increase in delicate nature and complexity of the synthesized nanostructures, a characterization technology that can observe these structures in three dimensions has become necessary, and developing such a technology is considerably challenging. DNA assemblies have been studied using different characterization methods including atomic force microscopy (AFM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). However, the three-dimensional(3D) DNA assemblies always collapse locally due to the dehydration during the drying process. Cryogenic electron microscopy(cryo-EM) can overcome the challenge by maintaining three-dimensional morphologies of the cryogenic samples and reconstruct the 3D models from cryogenic samples accordingly by collecting thousands of two-dimensional(2D) projection images, which can restore their original morphologies in solution. Here, we have reviewed several typical cases of 3D DNA-assemblies and highlighted the applications of cryo-EM in characterization of these assemblies. By comparing with some other characterization methods, we have shown how cryo-EM promoted the development of structural characterization in the field of DNA nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jun H., Zhang F., Shepherd T., Ratanalert S., Qi X., Yan H., Bathe M., Sci. Adv., 2019, 5, eaav0655

    PubMed  PubMed Central  Google Scholar 

  2. Andersen E. S., Dong M. D., Nielsen M. M., Jahn K., Lind-Thomsen A., Mamdouh W., Gothelf K. V., Besenbacher F., Kjems J., ACS Nano, 2008, 2, 1213

    CAS  PubMed  Google Scholar 

  3. Liu W., Halverson J., Tian Y., Tkachenko A. V., Gang O., Nat. Chem., 2016, 8, 867

    CAS  PubMed  Google Scholar 

  4. Willner E. M., Kamada Y., Suzuki Y., Emura T., Hidaka K., Dietz H., Sugiyama H., Endo M., Angew. Chem. Int. Ed., 2017, 56, 15324

    CAS  Google Scholar 

  5. Yang Y., Artificially Controllable Nanodevices Constructed by DNA Origami Technology: Photofunctionalization and Single-Molecule Analysis, Springer-Verlag Berlin, Berlin, 2015

    Google Scholar 

  6. Kearney C. J., Lucas C. R., O’Brien F. J., Castro C. E., Adv. Mater., 2016, 28, 5509

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chao J., Wang J. B., Wang F., Ouyang X. Y., Kopperger E., Liu H. J., Li Q., Shi J. Y., Wang L. H., Hu J., Wang L. H., Huang W., Simmel F. C., Fan C. H., Nat. Mater., 2019, 18, 273

    CAS  PubMed  Google Scholar 

  8. Kwon P. S., Ren S., Kwon S. J., Kizer M. E., Kuo L., Xie M., Zhu D., Zhou F., Zhang F., Kim D., Fraser K., Kramer L. D., Seeman N. C., Dordick J. S., Linhardt R. J., Chao J., Wang X., Nat. Chem., 2020, 12, 26

    CAS  PubMed  Google Scholar 

  9. Sun J., Evrin C., Samel S. A., Fernandez-Cid A., Riera A., Kawakami H., Stillman B., Speck C., Li H., Nat. Struct. Mol. Biol., 2013, 20, 944

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Abid Ali F., Renault L., Gannon J., Gahlon H. L., Kotecha A., Zhou J. C., Rueda D., Costa A., Nat. Commun., 2016, 7, 10708

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abid Ali F., Douglas M. E., Locke J., Pye V. E., Nans A., Diffley J. F. X., Costa A., Nat. Commun, 2017, 8, 2241

    PubMed  PubMed Central  Google Scholar 

  12. Fernandez-Leiro R., Conrad J., Scheres S. H., Lamers M. H., Elife, 2015, 4, e11134

    PubMed  PubMed Central  Google Scholar 

  13. Frank J., Ultramicroscopy, 1975, 1, 159

    CAS  PubMed  Google Scholar 

  14. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P., Q. Rev. Biophys., 1988, 21, 129

    CAS  PubMed  Google Scholar 

  15. Adrian M., Dubochet J., Lepault J., McDowall A. W., Nature, 1984, 308, 32

    CAS  PubMed  Google Scholar 

  16. Cheng Y., Science, 2018, 361, 876

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stark H., Zemlin F., Boettcher C., Ultramicroscopy, 1996, 63, 75

    CAS  Google Scholar 

  18. Seeman N. C., J. Theor. Biol., 1982, 99, 237

    CAS  PubMed  Google Scholar 

  19. Yan H., Park S. H., Finkelstein G., Reif J. H., LaBean T. H., Science, 2003, 301, 1882

    CAS  PubMed  Google Scholar 

  20. Liu Y., Ke Y. G., Yan H., J. Am. Chem. Soc., 2005, 127, 17140

    CAS  PubMed  Google Scholar 

  21. Zhao Z., Yan H., Liu Y., Angew. Chem. Int. Ed., 2010, 49, 1414

    CAS  Google Scholar 

  22. Liu W., Zhong H., Wang R., Seeman N. C., Angew. Chem. Int. Ed., 2011, 50, 264

    CAS  Google Scholar 

  23. Hong F., Jiang S., Lan X., Narayanan R. P., Sulc P., Zhang F., Liu Y., Yan H., J. Am. Chem. Soc., 2018, 140, 14670

    CAS  PubMed  Google Scholar 

  24. He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C., Nature, 2008, 452, 198

    CAS  PubMed  Google Scholar 

  25. Zhang C., He Y., Su M., Ko S. H., Ye T., Leng Y., Sun X., Ribbe A. E., Jiang W., Mao C., Faraday Discuss., 2009, 143, 221

    CAS  PubMed  Google Scholar 

  26. He Y., Su M., Fang P. A., Zhang C., Ribbe A. E., Jiang W., Mao C., Angew. Chem. Int. Ed., 2010, 49, 748

    CAS  Google Scholar 

  27. Zhang C., Wu W., Li X., Tian C., Qian H., Wang G., Jiang W., Mao C., Angew. Chem. Int. Ed., 2012, 51, 7999

    CAS  Google Scholar 

  28. Zhang C., Ko S. H., Su M., Leng Y., Ribbe A. E., Jiang W., Mao C., J. Am. Chem. Soc., 2009, 131, 1413

    CAS  PubMed  Google Scholar 

  29. Jiang Q., Liu Q., Shi Y., Wang Z. G., Zhan P., Liu J., Liu C., Wang H., Shi X., Zhang L., Sun J., Ding B., Liu M., Nano Lett., 2017, 17, 7125

    CAS  PubMed  Google Scholar 

  30. Zhang C., Su M., He Y., Zhao X., Fang P. A., Ribbe A. E., Jiang W., Mao C., PNAS, 2008, 105, 10665

    CAS  PubMed  Google Scholar 

  31. Rothemund P. W., Nature, 2006, 440, 297

    CAS  PubMed  Google Scholar 

  32. Jacobs W. M., Frenkel D., J. Am. Chem. Soc., 2016, 138, 2457

    CAS  PubMed  Google Scholar 

  33. Bai X., Martin T. G., Scheres S. H. W., Dietz H., PNAS, 2012, 109, 20012

    CAS  PubMed  Google Scholar 

  34. Xiong H., Sfeir M. Y., Gang O., Nano Lett., 2010, 10, 4456

    CAS  PubMed  Google Scholar 

  35. Hubner K., Pilo-Pais M., Selbach F., Liedl T., Tinnefeld P., Stefani F. D., Acuna G. P., Nano Lett., 2019, 19, 6629

    PubMed  Google Scholar 

  36. Hemmig E. A., Fitzgerald C., Maffeo C., Hecker L., Ochmann S. E., Aksimentiev A., Tinnefeld P., Keyser U. F., Nano Lett., 2018, 18, 1962

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chhabra R., Sharma J., Ke Y. G., Liu Y., Rinker S., Lindsay S., Yan H., J. Am. Chem. Soc., 2007, 129, 10304

    CAS  PubMed  Google Scholar 

  38. Sacca B., Meyer R., Erkelenz M., Kiko K., Arndt A., Schroeder H., Rabe K. S., Niemeyer C. M., Angew. Chem. Int. Ed., 2010, 49, 9378

    CAS  Google Scholar 

  39. Lin Z. W., Xiong Y., Xiang S. T., Gang O., J. Am. Chem. Soc., 2019, 141, 6797

    CAS  PubMed  Google Scholar 

  40. Emamy H., Gang O., Starr F. W., Nanomaterials, 2019, 9, 661

    CAS  PubMed Central  Google Scholar 

  41. Tian C., Cordeiro M. A. L., Lhermitte J., Xin H. L., Shani L., Liu M., Ma C., Yeshurun Y., DiMarzio D., Gang O., ACS Nano, 2017, 11, 7036

    CAS  PubMed  Google Scholar 

  42. Tian Y., Wang T., Liu W., Xin H. L., Li H., Ke Y., Shih W. M., Gang O., Nat. Nanotechnol., 2015, 10, 637

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang W., Chen S., An B., Huang K., Bai T., Xu M., Bellot G., Ke Y., Xiang Y., Wei B., Nat. Commun., 2019, 10, 1067

    PubMed  PubMed Central  Google Scholar 

  44. Yan H., Seeman N. C., J. Supramol. Chem., 2001, 1, 229

    CAS  Google Scholar 

  45. Yu G., Yan R., Zhang C., Mao C., Jiang W., Small, 2015, 11, 5157

    CAS  PubMed  Google Scholar 

  46. Liu W. Y., Tagawa M., Xin L. H. L., Wang T., Emamy H., Li H. L., Yager K. G., Starr F. W., Tkachenko A. V., Gang O., Science, 2016, 351, 582

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tian Y., Zhang Y., Wang T., Xin H. L., Li H., Gang O., Nat. Mater., 2016, 15, 654

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Niemeyer C. M., Angew. Chem. Int. Ed., 2010, 49, 1200

    CAS  Google Scholar 

  49. Rinker S., Ke Y., Liu Y., Chhabra R., Yan H., Nat. Nanotechnol., 2008, 3, 418

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen W. Q., Zhong H., Neff D., Norton M. L., J. Am. Chem. Soc., 2009, 131, 6660

    CAS  PubMed  Google Scholar 

  51. Yamazaki T., Heddle J. G., Kuzuya A., Komiyama M., Nanoscale, 2014, 6, 9122

    CAS  PubMed  Google Scholar 

  52. Linko V., Eerikainen M., Kostiainen M. A., Chem. Commun., 2015, 51, 5351

    CAS  Google Scholar 

  53. Dong Y. C., Chen S. B., Zhang S. J., Sodroski J., Yang Z. Q., Liu D. S., Mao Y. D., Angew. Chem. Int. Ed., 2018, 57, 2072

    CAS  Google Scholar 

  54. Klein W. P., Thomsen R. P., Turner K. B., Walper S. A., Vranish J., Kjems J., Ancona M. G., Medintz I. L., ACS Nano, 2019, 13, 13677

    CAS  PubMed  Google Scholar 

  55. Sun L. L., Gao Y. J., Xu Y., Chao J., Liu H. J., Wang L. H., Li D., Fan C. H., J. Am. Chem. Soc., 2017, 139, 17525

    CAS  PubMed  Google Scholar 

  56. Zhang C., Tian C., Guo F., Liu Z., Jiang W., Mao C., Angew. Chem. Int. Ed., 2012, 51, 3382

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the team members of Zhangjiang Lab National Facility for Protein Science in Shanghai(Electron Microscopy System) for their instrument support and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Li or Ye Tian.

Additional information

Supported by the National Natural Science Foundation of China(Nos.11835008, 21971109, 21834004), the National Key R&D Program of China(No.2017YFF0105000), the Special Project of Changsha-Zhuzhou-Xiangtan National Independent Innovation Demonstration Area, China (Nos. 2017GK2293, 2018XK2303), the Jiangsu Youth Fund, China(No. BK20180337), the Fundamental Research Funds for the Central Universities, China(No.14380151), the Program for Innovative Talents and Entrepreneur in Jiangsu Province, China(No.133181), the Shenzhen International Cooperation Research Project, China(No. GJHZ20180930090602235) and the Nanjing Science and Technology Innovation Project for Oversea Scholars’ Merit Funding, China (No. 133170).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Duan, J., Dai, L. et al. Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy. Chem. Res. Chin. Univ. 36, 227–236 (2020). https://doi.org/10.1007/s40242-020-9107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-9107-4

Keywords

Navigation