Abstract
DNA nanotechnology utilizes DNA double strands as building units for self-assembly of DNA nanostructures. The specific base-pairing interaction between DNA molecules is the basis of these assemblies. After decades of development, this technology has been able to construct complex and programmable structures. With the increase in delicate nature and complexity of the synthesized nanostructures, a characterization technology that can observe these structures in three dimensions has become necessary, and developing such a technology is considerably challenging. DNA assemblies have been studied using different characterization methods including atomic force microscopy (AFM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). However, the three-dimensional(3D) DNA assemblies always collapse locally due to the dehydration during the drying process. Cryogenic electron microscopy(cryo-EM) can overcome the challenge by maintaining three-dimensional morphologies of the cryogenic samples and reconstruct the 3D models from cryogenic samples accordingly by collecting thousands of two-dimensional(2D) projection images, which can restore their original morphologies in solution. Here, we have reviewed several typical cases of 3D DNA-assemblies and highlighted the applications of cryo-EM in characterization of these assemblies. By comparing with some other characterization methods, we have shown how cryo-EM promoted the development of structural characterization in the field of DNA nanotechnology.
Similar content being viewed by others
References
Jun H., Zhang F., Shepherd T., Ratanalert S., Qi X., Yan H., Bathe M., Sci. Adv., 2019, 5, eaav0655
Andersen E. S., Dong M. D., Nielsen M. M., Jahn K., Lind-Thomsen A., Mamdouh W., Gothelf K. V., Besenbacher F., Kjems J., ACS Nano, 2008, 2, 1213
Liu W., Halverson J., Tian Y., Tkachenko A. V., Gang O., Nat. Chem., 2016, 8, 867
Willner E. M., Kamada Y., Suzuki Y., Emura T., Hidaka K., Dietz H., Sugiyama H., Endo M., Angew. Chem. Int. Ed., 2017, 56, 15324
Yang Y., Artificially Controllable Nanodevices Constructed by DNA Origami Technology: Photofunctionalization and Single-Molecule Analysis, Springer-Verlag Berlin, Berlin, 2015
Kearney C. J., Lucas C. R., O’Brien F. J., Castro C. E., Adv. Mater., 2016, 28, 5509
Chao J., Wang J. B., Wang F., Ouyang X. Y., Kopperger E., Liu H. J., Li Q., Shi J. Y., Wang L. H., Hu J., Wang L. H., Huang W., Simmel F. C., Fan C. H., Nat. Mater., 2019, 18, 273
Kwon P. S., Ren S., Kwon S. J., Kizer M. E., Kuo L., Xie M., Zhu D., Zhou F., Zhang F., Kim D., Fraser K., Kramer L. D., Seeman N. C., Dordick J. S., Linhardt R. J., Chao J., Wang X., Nat. Chem., 2020, 12, 26
Sun J., Evrin C., Samel S. A., Fernandez-Cid A., Riera A., Kawakami H., Stillman B., Speck C., Li H., Nat. Struct. Mol. Biol., 2013, 20, 944
Abid Ali F., Renault L., Gannon J., Gahlon H. L., Kotecha A., Zhou J. C., Rueda D., Costa A., Nat. Commun., 2016, 7, 10708
Abid Ali F., Douglas M. E., Locke J., Pye V. E., Nans A., Diffley J. F. X., Costa A., Nat. Commun, 2017, 8, 2241
Fernandez-Leiro R., Conrad J., Scheres S. H., Lamers M. H., Elife, 2015, 4, e11134
Frank J., Ultramicroscopy, 1975, 1, 159
Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P., Q. Rev. Biophys., 1988, 21, 129
Adrian M., Dubochet J., Lepault J., McDowall A. W., Nature, 1984, 308, 32
Cheng Y., Science, 2018, 361, 876
Stark H., Zemlin F., Boettcher C., Ultramicroscopy, 1996, 63, 75
Seeman N. C., J. Theor. Biol., 1982, 99, 237
Yan H., Park S. H., Finkelstein G., Reif J. H., LaBean T. H., Science, 2003, 301, 1882
Liu Y., Ke Y. G., Yan H., J. Am. Chem. Soc., 2005, 127, 17140
Zhao Z., Yan H., Liu Y., Angew. Chem. Int. Ed., 2010, 49, 1414
Liu W., Zhong H., Wang R., Seeman N. C., Angew. Chem. Int. Ed., 2011, 50, 264
Hong F., Jiang S., Lan X., Narayanan R. P., Sulc P., Zhang F., Liu Y., Yan H., J. Am. Chem. Soc., 2018, 140, 14670
He Y., Ye T., Su M., Zhang C., Ribbe A. E., Jiang W., Mao C., Nature, 2008, 452, 198
Zhang C., He Y., Su M., Ko S. H., Ye T., Leng Y., Sun X., Ribbe A. E., Jiang W., Mao C., Faraday Discuss., 2009, 143, 221
He Y., Su M., Fang P. A., Zhang C., Ribbe A. E., Jiang W., Mao C., Angew. Chem. Int. Ed., 2010, 49, 748
Zhang C., Wu W., Li X., Tian C., Qian H., Wang G., Jiang W., Mao C., Angew. Chem. Int. Ed., 2012, 51, 7999
Zhang C., Ko S. H., Su M., Leng Y., Ribbe A. E., Jiang W., Mao C., J. Am. Chem. Soc., 2009, 131, 1413
Jiang Q., Liu Q., Shi Y., Wang Z. G., Zhan P., Liu J., Liu C., Wang H., Shi X., Zhang L., Sun J., Ding B., Liu M., Nano Lett., 2017, 17, 7125
Zhang C., Su M., He Y., Zhao X., Fang P. A., Ribbe A. E., Jiang W., Mao C., PNAS, 2008, 105, 10665
Rothemund P. W., Nature, 2006, 440, 297
Jacobs W. M., Frenkel D., J. Am. Chem. Soc., 2016, 138, 2457
Bai X., Martin T. G., Scheres S. H. W., Dietz H., PNAS, 2012, 109, 20012
Xiong H., Sfeir M. Y., Gang O., Nano Lett., 2010, 10, 4456
Hubner K., Pilo-Pais M., Selbach F., Liedl T., Tinnefeld P., Stefani F. D., Acuna G. P., Nano Lett., 2019, 19, 6629
Hemmig E. A., Fitzgerald C., Maffeo C., Hecker L., Ochmann S. E., Aksimentiev A., Tinnefeld P., Keyser U. F., Nano Lett., 2018, 18, 1962
Chhabra R., Sharma J., Ke Y. G., Liu Y., Rinker S., Lindsay S., Yan H., J. Am. Chem. Soc., 2007, 129, 10304
Sacca B., Meyer R., Erkelenz M., Kiko K., Arndt A., Schroeder H., Rabe K. S., Niemeyer C. M., Angew. Chem. Int. Ed., 2010, 49, 9378
Lin Z. W., Xiong Y., Xiang S. T., Gang O., J. Am. Chem. Soc., 2019, 141, 6797
Emamy H., Gang O., Starr F. W., Nanomaterials, 2019, 9, 661
Tian C., Cordeiro M. A. L., Lhermitte J., Xin H. L., Shani L., Liu M., Ma C., Yeshurun Y., DiMarzio D., Gang O., ACS Nano, 2017, 11, 7036
Tian Y., Wang T., Liu W., Xin H. L., Li H., Ke Y., Shih W. M., Gang O., Nat. Nanotechnol., 2015, 10, 637
Wang W., Chen S., An B., Huang K., Bai T., Xu M., Bellot G., Ke Y., Xiang Y., Wei B., Nat. Commun., 2019, 10, 1067
Yan H., Seeman N. C., J. Supramol. Chem., 2001, 1, 229
Yu G., Yan R., Zhang C., Mao C., Jiang W., Small, 2015, 11, 5157
Liu W. Y., Tagawa M., Xin L. H. L., Wang T., Emamy H., Li H. L., Yager K. G., Starr F. W., Tkachenko A. V., Gang O., Science, 2016, 351, 582
Tian Y., Zhang Y., Wang T., Xin H. L., Li H., Gang O., Nat. Mater., 2016, 15, 654
Niemeyer C. M., Angew. Chem. Int. Ed., 2010, 49, 1200
Rinker S., Ke Y., Liu Y., Chhabra R., Yan H., Nat. Nanotechnol., 2008, 3, 418
Shen W. Q., Zhong H., Neff D., Norton M. L., J. Am. Chem. Soc., 2009, 131, 6660
Yamazaki T., Heddle J. G., Kuzuya A., Komiyama M., Nanoscale, 2014, 6, 9122
Linko V., Eerikainen M., Kostiainen M. A., Chem. Commun., 2015, 51, 5351
Dong Y. C., Chen S. B., Zhang S. J., Sodroski J., Yang Z. Q., Liu D. S., Mao Y. D., Angew. Chem. Int. Ed., 2018, 57, 2072
Klein W. P., Thomsen R. P., Turner K. B., Walper S. A., Vranish J., Kjems J., Ancona M. G., Medintz I. L., ACS Nano, 2019, 13, 13677
Sun L. L., Gao Y. J., Xu Y., Chao J., Liu H. J., Wang L. H., Li D., Fan C. H., J. Am. Chem. Soc., 2017, 139, 17525
Zhang C., Tian C., Guo F., Liu Z., Jiang W., Mao C., Angew. Chem. Int. Ed., 2012, 51, 3382
Acknowledgements
The authors thank all the team members of Zhangjiang Lab National Facility for Protein Science in Shanghai(Electron Microscopy System) for their instrument support and technical assistance.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Supported by the National Natural Science Foundation of China(Nos.11835008, 21971109, 21834004), the National Key R&D Program of China(No.2017YFF0105000), the Special Project of Changsha-Zhuzhou-Xiangtan National Independent Innovation Demonstration Area, China (Nos. 2017GK2293, 2018XK2303), the Jiangsu Youth Fund, China(No. BK20180337), the Fundamental Research Funds for the Central Universities, China(No.14380151), the Program for Innovative Talents and Entrepreneur in Jiangsu Province, China(No.133181), the Shenzhen International Cooperation Research Project, China(No. GJHZ20180930090602235) and the Nanjing Science and Technology Innovation Project for Oversea Scholars’ Merit Funding, China (No. 133170).
Rights and permissions
About this article
Cite this article
Wang, M., Duan, J., Dai, L. et al. Characterization of 3D DNA Assemblies Using Cryogenic Electron Microscopy. Chem. Res. Chin. Univ. 36, 227–236 (2020). https://doi.org/10.1007/s40242-020-9107-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40242-020-9107-4