Abstract
Self-assembled supramolecular networks are promising spacer layer for electronic decoupling from the metal substrate. However, the mechanism behind of how the intrinsic electronic structure of spacer layers affects the adsorbate is still unclear. Here a hydrogen bonded network composed of n-type semiconducting molecules 3,4,9,10-perylene-tetracarboxylic-dianhydride(PTCDA) is prepared under ultra-high vacuum to serve as a spacer layer for functional organics C60 on Au(111). The geometric and electronic information of C60 was investigated by scanning tunneling microscopy and scanning tunneling spectroscopy(STM/STS) at 5 K. Effective decoupling from the metal surface yields an energy gap of 3.67 eV for C602nd, merely considering the HOMO-LUMO peak separation. The broadening of resonance peaks in STS measurements however indicates unneglected interlayer interactions in this hetero-organic system. Moreover, we scrutinize the nucleation sites of C60 on PTCDA layer and attribute this to the decreased diffusion capability on a less dense molecular arrangement possessing inhomogeneous spatial distribution of unoccupied molecular orbitals.
This is a preview of subscription content, access via your institution.
References
Sekitani T., Nakajima H., Maeda H., Fukushima T., Aida T., Hata K., Someya T., Nat. Mater., 2009, 6, 494
Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature, 2012, 7428, 234
Zhao J. B., Li Y. K., Yang G. F., Jiang K., Lin H. R., Ade H., Ma W., Yan H., Nat. Energy., 2016, 1, 15027
Wohrle D., Meissner D., Adv. Mater., 1991, 3, 129
Gunes S., Neugebauer H., Sariciftci N. S., Chem. Rev., 2007, 4, 1324
Meijer E. J., de Leeuw D. M., Setayesh S., van Veenendaal E., Huisman B. H., Blom P. W. M., Hummelen J. C., Scherf U., Kadam J., Klapwijk T. M., Nat. Mater., 2003, 12, 834
Schon J. H., Meng H., Bao Z. N., Science, 2001, 5549, 2138
Jones B. A., Facchetti A., Wasielewski M. R., Marks T. J., Adv. Funct. Mater., 2008, 8, 1329
Gamerith S., Klug A., Scheiber H., Scherf U., Moderegger E., List E. J. W., Adv. Funct. Mater., 2007, 16, 3111
Dodabalapur A., Katz H. E., Torsi L., Haddon R. C., Science, 1995, 5230, 1560
Liu Z. H., Sun K. W., Li X. C., Li L., Zhang H. M., Chi L. F., J. Phys. Chem. Lett., 2019, 15, 4297
Yang B., Cao N., Ju H. X., Lin H. P., Li Y. Y., Ding H. H., Ding J. Q., Zhang J. J., Peng C. C., Zhang H. M., Zhu J. F., Li Q., Chi L. F., J. Am. Chem. Soc., 2019, 1, 168
Sun K. W., Chen A. X., Liu M. Z., Zhang H. M., Duan R. M., Ji P. H., Li L., Li Q., Li C., Zhong D. Y., Mullen K., Chi L. F., J. Am. Chem. Soc., 2018, 14, 4820
Zhong Q. G., Ebeling D., Tschakert J., Gao Y. X., Bao D. L., Du S. X., Li C., Chi L. F., Schirmeisen A., Nat. Commun., 2018, 9, 3277
Kohler U., Jusko O., Pietsch G., Muller B., Henzler M., Surf. Sci., 1991, 3, 321
Kolmer M., Zuzak R., Steiner A. K., Zajac L., Engelund M., Godlewski S., Szymonski M., Amsharov K., Science, 2019, 6422, 57
Sun K. W., Ji P. H., Zhang J. J., Wang J. X., Li X. C., Xu X., Zhang H. M., Chi L. F., Small, 2019, 15, 1804526
Merino-Diez N., Garcia-Lekue A., Carbonell-Sanroma E., Li J. C., Corso M., Colazzo L., Sedona F., Sanchez-Portal D., Pascual J. I., de Oteyza D. G., ACS Nano, 2017, 11, 11661
Grobis M., Khoo K. H., Yamachika R., Lu X. H., Nagaoka K., Louie S. G., Crommie M. F., Kato H., Shinohara H., Phys. Rev. Lett., 2005, 94, 136802
Wang Y., Brar V. W., Shytov A. V., Wu Q., Regan W., Tsai H. Z., Zettl A., Levitov L. S., Crommie M. F., Nat. Phys., 2012, 9, 653
Chizhov I., Kahn A., Scoles G., J. Cryst. Growth., 2000, 1, 449
Sahoo R. R., Patnaik A., J. Colloid. Interf. Sci., 2003, 1, 43
Cochrane K. A., Schiffrin A., Roussy T. S., Capsoni M., Burke S. A., Nat. Commun., 2015, 6, 8312
Majima Y., Ogawa D., Iwamoto M., Azuma Y., Tsurumaki E., Osuka A., J. Am. Chem. Soc., 2013, 38, 14159
Zeng C. G., Wang H. Q., Wang B., Yang J. L., Hou J. G., Appl. Phys. Lett., 2000, 22, 3595
Mura M., Sun X., Silly F., Jonkman H. T., Briggs G. A. D., Castell M. R., Kantorovich L. N., Phys. Rev. B, 2010, 81, 195412
Kroger J., Jensen H., Berndt R., Rurali R., Lorente N., Chem. Phys. Lett., 2007, 4, 249
Feng M., Zhao J., Petek H., Science, 2008, 5874, 359
Acknowledgments
We thank the Collaborative Innovation Center of Suzhou Nano Science & Technology, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Supported by the National Natural Science Foundation of China(Nos.21673154, 21790053) and the Project of the Ministry of Science and Technology of China(No.2017YFA0205002).
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Li, L., Li, X., Tang, Y. et al. Geometric and Electronic Behavior of C60 on PTCDA Hydrogen Bonded Network. Chem. Res. Chin. Univ. 36, 81–85 (2020). https://doi.org/10.1007/s40242-020-9099-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40242-020-9099-0
Keywords
- Electronic decoupling
- Scanning tunneling microscopy/spectroscopy
- C60
- 3,4,9,10-Perylene-tetracarboxylic-dianhydride(PTCDA)