Skip to main content

Geometric and Electronic Behavior of C60 on PTCDA Hydrogen Bonded Network

Abstract

Self-assembled supramolecular networks are promising spacer layer for electronic decoupling from the metal substrate. However, the mechanism behind of how the intrinsic electronic structure of spacer layers affects the adsorbate is still unclear. Here a hydrogen bonded network composed of n-type semiconducting molecules 3,4,9,10-perylene-tetracarboxylic-dianhydride(PTCDA) is prepared under ultra-high vacuum to serve as a spacer layer for functional organics C60 on Au(111). The geometric and electronic information of C60 was investigated by scanning tunneling microscopy and scanning tunneling spectroscopy(STM/STS) at 5 K. Effective decoupling from the metal surface yields an energy gap of 3.67 eV for C602nd, merely considering the HOMO-LUMO peak separation. The broadening of resonance peaks in STS measurements however indicates unneglected interlayer interactions in this hetero-organic system. Moreover, we scrutinize the nucleation sites of C60 on PTCDA layer and attribute this to the decreased diffusion capability on a less dense molecular arrangement possessing inhomogeneous spatial distribution of unoccupied molecular orbitals.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Sekitani T., Nakajima H., Maeda H., Fukushima T., Aida T., Hata K., Someya T., Nat. Mater., 2009, 6, 494

    Article  Google Scholar 

  2. [2]

    Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature, 2012, 7428, 234

    Article  Google Scholar 

  3. [3]

    Zhao J. B., Li Y. K., Yang G. F., Jiang K., Lin H. R., Ade H., Ma W., Yan H., Nat. Energy., 2016, 1, 15027

    CAS  Article  Google Scholar 

  4. [4]

    Wohrle D., Meissner D., Adv. Mater., 1991, 3, 129

    Article  Google Scholar 

  5. [5]

    Gunes S., Neugebauer H., Sariciftci N. S., Chem. Rev., 2007, 4, 1324

    Article  Google Scholar 

  6. [6]

    Meijer E. J., de Leeuw D. M., Setayesh S., van Veenendaal E., Huisman B. H., Blom P. W. M., Hummelen J. C., Scherf U., Kadam J., Klapwijk T. M., Nat. Mater., 2003, 12, 834

    Article  Google Scholar 

  7. [7]

    Schon J. H., Meng H., Bao Z. N., Science, 2001, 5549, 2138

    Article  Google Scholar 

  8. [8]

    Jones B. A., Facchetti A., Wasielewski M. R., Marks T. J., Adv. Funct. Mater., 2008, 8, 1329

    Article  Google Scholar 

  9. [9]

    Gamerith S., Klug A., Scheiber H., Scherf U., Moderegger E., List E. J. W., Adv. Funct. Mater., 2007, 16, 3111

    Article  Google Scholar 

  10. [10]

    Dodabalapur A., Katz H. E., Torsi L., Haddon R. C., Science, 1995, 5230, 1560

    Article  Google Scholar 

  11. [11]

    Liu Z. H., Sun K. W., Li X. C., Li L., Zhang H. M., Chi L. F., J. Phys. Chem. Lett., 2019, 15, 4297

    Article  Google Scholar 

  12. [12]

    Yang B., Cao N., Ju H. X., Lin H. P., Li Y. Y., Ding H. H., Ding J. Q., Zhang J. J., Peng C. C., Zhang H. M., Zhu J. F., Li Q., Chi L. F., J. Am. Chem. Soc., 2019, 1, 168

    Article  Google Scholar 

  13. [13]

    Sun K. W., Chen A. X., Liu M. Z., Zhang H. M., Duan R. M., Ji P. H., Li L., Li Q., Li C., Zhong D. Y., Mullen K., Chi L. F., J. Am. Chem. Soc., 2018, 14, 4820

    Article  Google Scholar 

  14. [14]

    Zhong Q. G., Ebeling D., Tschakert J., Gao Y. X., Bao D. L., Du S. X., Li C., Chi L. F., Schirmeisen A., Nat. Commun., 2018, 9, 3277

    Article  Google Scholar 

  15. [15]

    Kohler U., Jusko O., Pietsch G., Muller B., Henzler M., Surf. Sci., 1991, 3, 321

    Article  Google Scholar 

  16. [16]

    Kolmer M., Zuzak R., Steiner A. K., Zajac L., Engelund M., Godlewski S., Szymonski M., Amsharov K., Science, 2019, 6422, 57

    Article  Google Scholar 

  17. [17]

    Sun K. W., Ji P. H., Zhang J. J., Wang J. X., Li X. C., Xu X., Zhang H. M., Chi L. F., Small, 2019, 15, 1804526

    Article  Google Scholar 

  18. [18]

    Merino-Diez N., Garcia-Lekue A., Carbonell-Sanroma E., Li J. C., Corso M., Colazzo L., Sedona F., Sanchez-Portal D., Pascual J. I., de Oteyza D. G., ACS Nano, 2017, 11, 11661

    CAS  Article  Google Scholar 

  19. [19]

    Grobis M., Khoo K. H., Yamachika R., Lu X. H., Nagaoka K., Louie S. G., Crommie M. F., Kato H., Shinohara H., Phys. Rev. Lett., 2005, 94, 136802

    CAS  Article  Google Scholar 

  20. [20]

    Wang Y., Brar V. W., Shytov A. V., Wu Q., Regan W., Tsai H. Z., Zettl A., Levitov L. S., Crommie M. F., Nat. Phys., 2012, 9, 653

    Article  Google Scholar 

  21. [21]

    Chizhov I., Kahn A., Scoles G., J. Cryst. Growth., 2000, 1, 449

    Article  Google Scholar 

  22. [22]

    Sahoo R. R., Patnaik A., J. Colloid. Interf. Sci., 2003, 1, 43

    CAS  Article  Google Scholar 

  23. [23]

    Cochrane K. A., Schiffrin A., Roussy T. S., Capsoni M., Burke S. A., Nat. Commun., 2015, 6, 8312

    CAS  Article  Google Scholar 

  24. [24]

    Majima Y., Ogawa D., Iwamoto M., Azuma Y., Tsurumaki E., Osuka A., J. Am. Chem. Soc., 2013, 38, 14159

    Article  Google Scholar 

  25. [25]

    Zeng C. G., Wang H. Q., Wang B., Yang J. L., Hou J. G., Appl. Phys. Lett., 2000, 22, 3595

    Article  Google Scholar 

  26. [26]

    Mura M., Sun X., Silly F., Jonkman H. T., Briggs G. A. D., Castell M. R., Kantorovich L. N., Phys. Rev. B, 2010, 81, 195412

    Article  Google Scholar 

  27. [27]

    Kroger J., Jensen H., Berndt R., Rurali R., Lorente N., Chem. Phys. Lett., 2007, 4, 249

    Article  Google Scholar 

  28. [28]

    Feng M., Zhao J., Petek H., Science, 2008, 5874, 359

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Collaborative Innovation Center of Suzhou Nano Science & Technology, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Haiming Zhang or Lifeng Chi.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21673154, 21790053) and the Project of the Ministry of Science and Technology of China(No.2017YFA0205002).

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, X., Tang, Y. et al. Geometric and Electronic Behavior of C60 on PTCDA Hydrogen Bonded Network. Chem. Res. Chin. Univ. 36, 81–85 (2020). https://doi.org/10.1007/s40242-020-9099-0

Download citation

Keywords

  • Electronic decoupling
  • Scanning tunneling microscopy/spectroscopy
  • C60
  • 3,4,9,10-Perylene-tetracarboxylic-dianhydride(PTCDA)