Abstract
The introduction of plasmons is an important method to solve the insufficient utilization of the full spectrum of solar energy by semiconductor catalysts. However, semiconductor catalysts combined with traditional noble metal plasmons(Au, Ag) can only extend the absorption spectrum to partially visible light. In order to further improve the photoenergy absorption efficiency of catalysts, they need to be able to effectively utilize near-infrared light, which has become a new research direction. Recent studies have shown that traditional noble metal plasmons can absorb a part of NIR through special morphology, size control and material composite. At the same time, gratifying achievements have been made in the application of plasmonic semiconductors with broad spectrum absorption in catalysis. This article reviews the principles of generating and regulating plasmonic effects in different catalytic systems. The applications of plasmon absorption of near-infrared light in energy conversion and environmental remediation have also been presented.
This is a preview of subscription content, access via your institution.
References
- [1]
Lewis N. S., Nocera D. G., Proc. Natl. Acad. Sci. USA, 2006, 103, 15729
- [2]
Xu Y., Zhang C., Zhang L., Zhang X., Yao H., Shi J., Energy & Environmental Science, 2016, 9, 2410
- [3]
Wang L., Chen W., Zhang D., Du Y., Amal R., Qiao S., Wu J., Yin Z., Chemical Society Reviews, 2019, 48, 5310
- [4]
Yang M. Q., Gao M., Hong M., Ho G. W., Adv. Mater., 2018, 30, e1802894
- [5]
Gao W., Tian B., Zhang W., Zhang X., Wu Y., Lu G., Applied Catalysis B: Environmental, 2019, 257, 117908
- [6]
Feng W., Han X., Wang R., Gao X., Hu P., Yue W., Chen Y., Shi J., Advanced Materials, 2019, 31, 1805919
- [7]
Yin Z., Chen B., Bosman M., Cao X., Chen J., Zheng B., Zhang H., Small, 2014, 10, 3537
- [8]
Chen W., Li X., Wang F., Javaid S., Pang Y., Chen J., Yin Z., Wang S., Li Y., Jia G., Small, 2020, 16, 1902231
- [9]
Manzi A., Simon T., Sonnleitner C., Doblinger M., Wyrwich R., Stern O., Stolarczyk J. K., Feldmann J., J. Am. Chem. Soc., 2015, 137, 14007
- [10]
Willets K. A., van Duyne R. P., Annu. Rev. Phys. Chem., 2007, 58, 267
- [11]
Yang J., Guo Y., Lu W., Jiang R., Wang J., Adv. Mater., 2018, 30, e1802227
- [12]
Xu L., Yin Z., Cao S. W., Fan Z., Zhang X., Zhang H., Xue C., Chemistry—A European Journal, 2014, 20, 2742
- [13]
Liu Z., Lu Z., Bosman M., Li N., Frankcombe T. J., Jia G., Tricoli A., Liu Y., Du Y., Yin Z., Small, 2018, 14, 1803233
- [14]
Li Y., Wang L., Low J., Wu D., Hu C., Jiang W., Ma J., Wang C., Long R., Song L., Chinese Chemical Letters, 2020, 31, 231
- [15]
Hong X., Yin Z., Fan Z., Tay Y. Y., Chen J., Du Y., Xue C., Chen H., Zhang H., Small, 2013, 10, 479
- [16]
Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., Journal of Physical Chemistry B, 2003, 107, 668
- [17]
Jain P. K., El-Sayed M. A., Nano Lett., 2007, 7, 2854
- [18]
Huang X., El-Sayed I. H., Qian W., El-Sayed M. A., Journal of the American Chemical Society, 2006, 128, 2115
- [19]
Lou Z., Gu Q., Xu L., Liao Y., Xue C., Chem. Asian J., 2015, 10, 1291
- [20]
Huang Q., Hu S., Zhuang J., Wang X., Chemistry—A European Journal, 2012, 18, 15283
- [21]
Kriegel I., Jiang C., Rodriguez-Fernandez J., Schaller R. D., Talapin D. V., da Como E., Feldmann J., J. Am. Chem. Soc., 2012, 134, 1583
- [22]
Kanehara M., Koike H., Yoshinaga T., Teranishi T., J. Am. Chem. Soc., 2009, 131, 17736
- [23]
Yan J., Wang T., Wu G., Dai W., Guan N., Li L., Gong J., Adv. Mater., 2015, 27, 1580
- [24]
Chen X., Li N., Kong Z., Ong W.-J., Zhao X., Materials Horizons, 2018, 5, 9
- [25]
Jiang R., Li B., Fang C., Wang J., Adv. Mater., 2014, 26, 5274
- [26]
Zhang X., Zhu Y., Yang X., Wang S., Shen J., Lin B., Li C., Nanoscale, 2013, 5, 3359
- [27]
Han P., Tana T., Xiao Q., Sarina S., Waclawik E. R., Gómez D. E., Zhu H., Chem, 2019, 5, 2879
- [28]
Qiao P., Sun B., Li H., Pan K., Tian G., Wang L., Zhou W., Chem. Asian J., 2019, 14, 177
- [29]
Jia J., O’Brien P. G., He L., Qiao Q., Fei T., Reyes L. M., Burrow T. E., Dong Y., Liao K., Varela M., Advanced Science, 2016, 3, 1600189
- [30]
Zhu M., Cai X., Fujitsuka M., Zhang J., Majima T., Angewandte Chemie International Edition, 2017, 56, 2064
- [31]
Xu Z., Quintanilla M., Vetrone F., Govorov A. O., Chaker M., Ma D., Advanced Functional Materials, 2015, 25, 2950
- [32]
Ha E., Lee L. Y. S., Wang J., Li F., Wong K. Y., Tsang S. C. E., Advanced Materials, 2014, 26, 3496
- [33]
Persson C., Journal of Applied Physics, 2010, 107, 053710
- [34]
Zheng Z., Tachikawa T., Majima T., J. Am. Chem. Soc., 2014, 136, 6870
- [35]
Zhang Y., Ding H., Liu Y., Pan S., Luo Y., Li G., Journal of Materials Chemistry, 2012, 22, 10779
- [36]
Xu H., Huang Y., Luo D., Yang X., Jin S., Guo Q., Zhao Y., Fang Y., Wei Y., Wu J., Separation and Purification Technology, 2019, 210, 281
- [37]
Lou Z., Zhang P., Li J., Yang X., Huang B., Li B., Advanced Functional Materials, 2019, 29, 1808696
- [38]
Li J., Ye Y., Ye L., Su F., Ma Z., Huang J., Xie H., Doronkin D. E., Zimina A., Grunwaldt J.-D., Journal of Materials Chemistry A, 2019, 7, 2821
- [39]
An C., Peng S., Sun Y., Adv. Mater., 2010, 22, 2570
- [40]
Ji H., Lyu L., Zhang L., An X., Hu C., Applied Catalysis B: Environmental, 2016, 199, 230
- [41]
Chen J., Che H., Huang K., Liu C., Shi W., Applied Catalysis B: Environmental, 2016, 192, 134
- [42]
Shi W., Lv H., Yuan S., Huang H., Liu Y., Kang Z., Separation and Purification Technology, 2017, 174, 75
- [43]
Tian Q., Yao W., Wu W., Liu J., Wu Z., Liu L., Dai Z., Jiang C., ACS Sustainable Chemistry & Engineering, 2017, 5, 10889
- [44]
Zhang J., Fu X., Hao H., Gan W., Journal of Alloys and Compounds, 2018, 757, 134
- [45]
Johansson M. B., Niklasson G. A., Österlund L., Journal of Materials Research, 2012, 27, 3130
Author information
Affiliations
Corresponding authors
Additional information
Supported by the Project of the State Key Laboratory of Electrical Insulation and Power Equipment at Xi’an Jiaotong University, China(No.51521065).
Rights and permissions
About this article
Cite this article
Wang, W., Saji, S.E., Karutur, S. et al. NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation. Chem. Res. Chin. Univ. 36, 1000–1005 (2020). https://doi.org/10.1007/s40242-020-0342-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Near-infrared
- Plasmon
- Energy conversion
- Environmental remediation