NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation

Abstract

The introduction of plasmons is an important method to solve the insufficient utilization of the full spectrum of solar energy by semiconductor catalysts. However, semiconductor catalysts combined with traditional noble metal plasmons(Au, Ag) can only extend the absorption spectrum to partially visible light. In order to further improve the photoenergy absorption efficiency of catalysts, they need to be able to effectively utilize near-infrared light, which has become a new research direction. Recent studies have shown that traditional noble metal plasmons can absorb a part of NIR through special morphology, size control and material composite. At the same time, gratifying achievements have been made in the application of plasmonic semiconductors with broad spectrum absorption in catalysis. This article reviews the principles of generating and regulating plasmonic effects in different catalytic systems. The applications of plasmon absorption of near-infrared light in energy conversion and environmental remediation have also been presented.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Lewis N. S., Nocera D. G., Proc. Natl. Acad. Sci. USA, 2006, 103, 15729

    CAS  PubMed  Google Scholar 

  2. [2]

    Xu Y., Zhang C., Zhang L., Zhang X., Yao H., Shi J., Energy & Environmental Science, 2016, 9, 2410

    CAS  Google Scholar 

  3. [3]

    Wang L., Chen W., Zhang D., Du Y., Amal R., Qiao S., Wu J., Yin Z., Chemical Society Reviews, 2019, 48, 5310

    CAS  PubMed  Google Scholar 

  4. [4]

    Yang M. Q., Gao M., Hong M., Ho G. W., Adv. Mater., 2018, 30, e1802894

    PubMed  Google Scholar 

  5. [5]

    Gao W., Tian B., Zhang W., Zhang X., Wu Y., Lu G., Applied Catalysis B: Environmental, 2019, 257, 117908

    CAS  Google Scholar 

  6. [6]

    Feng W., Han X., Wang R., Gao X., Hu P., Yue W., Chen Y., Shi J., Advanced Materials, 2019, 31, 1805919

    Google Scholar 

  7. [7]

    Yin Z., Chen B., Bosman M., Cao X., Chen J., Zheng B., Zhang H., Small, 2014, 10, 3537

    CAS  PubMed  Google Scholar 

  8. [8]

    Chen W., Li X., Wang F., Javaid S., Pang Y., Chen J., Yin Z., Wang S., Li Y., Jia G., Small, 2020, 16, 1902231

    CAS  Google Scholar 

  9. [9]

    Manzi A., Simon T., Sonnleitner C., Doblinger M., Wyrwich R., Stern O., Stolarczyk J. K., Feldmann J., J. Am. Chem. Soc., 2015, 137, 14007

    CAS  PubMed  Google Scholar 

  10. [10]

    Willets K. A., van Duyne R. P., Annu. Rev. Phys. Chem., 2007, 58, 267

    CAS  PubMed  Google Scholar 

  11. [11]

    Yang J., Guo Y., Lu W., Jiang R., Wang J., Adv. Mater., 2018, 30, e1802227

    PubMed  Google Scholar 

  12. [12]

    Xu L., Yin Z., Cao S. W., Fan Z., Zhang X., Zhang H., Xue C., Chemistry—A European Journal, 2014, 20, 2742

    CAS  Google Scholar 

  13. [13]

    Liu Z., Lu Z., Bosman M., Li N., Frankcombe T. J., Jia G., Tricoli A., Liu Y., Du Y., Yin Z., Small, 2018, 14, 1803233

    Google Scholar 

  14. [14]

    Li Y., Wang L., Low J., Wu D., Hu C., Jiang W., Ma J., Wang C., Long R., Song L., Chinese Chemical Letters, 2020, 31, 231

    CAS  Google Scholar 

  15. [15]

    Hong X., Yin Z., Fan Z., Tay Y. Y., Chen J., Du Y., Xue C., Chen H., Zhang H., Small, 2013, 10, 479

    PubMed  Google Scholar 

  16. [16]

    Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., Journal of Physical Chemistry B, 2003, 107, 668

    CAS  Google Scholar 

  17. [17]

    Jain P. K., El-Sayed M. A., Nano Lett., 2007, 7, 2854

    CAS  PubMed  Google Scholar 

  18. [18]

    Huang X., El-Sayed I. H., Qian W., El-Sayed M. A., Journal of the American Chemical Society, 2006, 128, 2115

    CAS  PubMed  Google Scholar 

  19. [19]

    Lou Z., Gu Q., Xu L., Liao Y., Xue C., Chem. Asian J., 2015, 10, 1291

    CAS  PubMed  Google Scholar 

  20. [20]

    Huang Q., Hu S., Zhuang J., Wang X., Chemistry—A European Journal, 2012, 18, 15283

    CAS  Google Scholar 

  21. [21]

    Kriegel I., Jiang C., Rodriguez-Fernandez J., Schaller R. D., Talapin D. V., da Como E., Feldmann J., J. Am. Chem. Soc., 2012, 134, 1583

    CAS  PubMed  Google Scholar 

  22. [22]

    Kanehara M., Koike H., Yoshinaga T., Teranishi T., J. Am. Chem. Soc., 2009, 131, 17736

    CAS  PubMed  Google Scholar 

  23. [23]

    Yan J., Wang T., Wu G., Dai W., Guan N., Li L., Gong J., Adv. Mater., 2015, 27, 1580

    CAS  PubMed  Google Scholar 

  24. [24]

    Chen X., Li N., Kong Z., Ong W.-J., Zhao X., Materials Horizons, 2018, 5, 9

    CAS  Google Scholar 

  25. [25]

    Jiang R., Li B., Fang C., Wang J., Adv. Mater., 2014, 26, 5274

    CAS  PubMed  Google Scholar 

  26. [26]

    Zhang X., Zhu Y., Yang X., Wang S., Shen J., Lin B., Li C., Nanoscale, 2013, 5, 3359

    CAS  PubMed  Google Scholar 

  27. [27]

    Han P., Tana T., Xiao Q., Sarina S., Waclawik E. R., Gómez D. E., Zhu H., Chem, 2019, 5, 2879

    CAS  Google Scholar 

  28. [28]

    Qiao P., Sun B., Li H., Pan K., Tian G., Wang L., Zhou W., Chem. Asian J., 2019, 14, 177

    CAS  PubMed  Google Scholar 

  29. [29]

    Jia J., O’Brien P. G., He L., Qiao Q., Fei T., Reyes L. M., Burrow T. E., Dong Y., Liao K., Varela M., Advanced Science, 2016, 3, 1600189

    PubMed  PubMed Central  Google Scholar 

  30. [30]

    Zhu M., Cai X., Fujitsuka M., Zhang J., Majima T., Angewandte Chemie International Edition, 2017, 56, 2064

    CAS  PubMed  Google Scholar 

  31. [31]

    Xu Z., Quintanilla M., Vetrone F., Govorov A. O., Chaker M., Ma D., Advanced Functional Materials, 2015, 25, 2950

    CAS  Google Scholar 

  32. [32]

    Ha E., Lee L. Y. S., Wang J., Li F., Wong K. Y., Tsang S. C. E., Advanced Materials, 2014, 26, 3496

    CAS  PubMed  Google Scholar 

  33. [33]

    Persson C., Journal of Applied Physics, 2010, 107, 053710

    Google Scholar 

  34. [34]

    Zheng Z., Tachikawa T., Majima T., J. Am. Chem. Soc., 2014, 136, 6870

    CAS  PubMed  Google Scholar 

  35. [35]

    Zhang Y., Ding H., Liu Y., Pan S., Luo Y., Li G., Journal of Materials Chemistry, 2012, 22, 10779

    CAS  Google Scholar 

  36. [36]

    Xu H., Huang Y., Luo D., Yang X., Jin S., Guo Q., Zhao Y., Fang Y., Wei Y., Wu J., Separation and Purification Technology, 2019, 210, 281

    CAS  Google Scholar 

  37. [37]

    Lou Z., Zhang P., Li J., Yang X., Huang B., Li B., Advanced Functional Materials, 2019, 29, 1808696

    Google Scholar 

  38. [38]

    Li J., Ye Y., Ye L., Su F., Ma Z., Huang J., Xie H., Doronkin D. E., Zimina A., Grunwaldt J.-D., Journal of Materials Chemistry A, 2019, 7, 2821

    CAS  Google Scholar 

  39. [39]

    An C., Peng S., Sun Y., Adv. Mater., 2010, 22, 2570

    CAS  PubMed  Google Scholar 

  40. [40]

    Ji H., Lyu L., Zhang L., An X., Hu C., Applied Catalysis B: Environmental, 2016, 199, 230

    CAS  Google Scholar 

  41. [41]

    Chen J., Che H., Huang K., Liu C., Shi W., Applied Catalysis B: Environmental, 2016, 192, 134

    CAS  Google Scholar 

  42. [42]

    Shi W., Lv H., Yuan S., Huang H., Liu Y., Kang Z., Separation and Purification Technology, 2017, 174, 75

    CAS  Google Scholar 

  43. [43]

    Tian Q., Yao W., Wu W., Liu J., Wu Z., Liu L., Dai Z., Jiang C., ACS Sustainable Chemistry & Engineering, 2017, 5, 10889

    CAS  Google Scholar 

  44. [44]

    Zhang J., Fu X., Hao H., Gan W., Journal of Alloys and Compounds, 2018, 757, 134

    CAS  Google Scholar 

  45. [45]

    Johansson M. B., Niklasson G. A., Österlund L., Journal of Materials Research, 2012, 27, 3130

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Siva Karutur or Guodong Meng or Zongyou Yin.

Additional information

Supported by the Project of the State Key Laboratory of Electrical Insulation and Power Equipment at Xi’an Jiaotong University, China(No.51521065).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Saji, S.E., Karutur, S. et al. NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation. Chem. Res. Chin. Univ. 36, 1000–1005 (2020). https://doi.org/10.1007/s40242-020-0342-5

Download citation

Keywords

  • Near-infrared
  • Plasmon
  • Energy conversion
  • Environmental remediation