Skip to main content

Advertisement

Log in

Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Low-cost lithium sulfur(Li-S) batteries afford preeminent prospect as a next-generation high-energy storage device by virtue of great theoretical capacity. Nevertheless, their applications are restricted by some challenging technical barriers, such as weak cycling stability and low poor-conductivity sulfur loading originated in notorious shuttling effect of polysulfide intermediates. Herein, free of any complicated compositing process, we design an interlayer of carbon fiber paper supported TiO2/TiO to impede the shuttle effect and enhance the electrical conductivity via physical isolation and chemical adsorption. Such a self-crystallized homogeneous interlayer, where TiO2/TiO enables absorbing lithium polysulfides(LiPSs) and TiO plays a key role of high-electron-conductivity exhibited ultrahigh capacities(1000 mA·h/g at 0.5 C and 900 mA·h/g at 1 C) and outstanding capacity retention rate(97%) after 100 cycles. Thus, our design provides a simple route to suppress the shuttle effect via self-derived evolution Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D., Energy & Environmental Science, 2011, 4, 3243

    Article  CAS  Google Scholar 

  2. Tang Y., Zhang Y., Li W., Ma B., Chen X., Chemical Society Reviews, 2015, 44, 5926

    Article  CAS  Google Scholar 

  3. Zhang W., Wang D., Zheng W., Journal of Energy Chemistry, 2020, 41100

  4. Seh Z. W., Sun Y., Zhang Q., Cui Y., Chemical Society Reviews, 2016, 45, 5605

    Article  CAS  Google Scholar 

  5. Pope M. A., Aksay I. A., Advanced Energy Materials, 2015, 5, 1500124

    Article  Google Scholar 

  6. Peng H., Huang J., Cheng X., Zhang Q., Advanced Energy Materials, 2017, 7, 1700260

    Article  Google Scholar 

  7. Cheng Z., Pan H., Zhong H., Xiao Z., Li X., Wang R., Advanced Functional Materials, 2018, 28, 1707597

    Article  Google Scholar 

  8. Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J. M., Nature Materials, 2011, 11, 19

    Article  Google Scholar 

  9. Ren W., Ma W., Zhang S., Tang B., Energy Storage Materials, 2019, 23, 707

    Article  Google Scholar 

  10. Zhang X., Jin B., Li L., Cheng T., Wang H., Xin P., Lang X., Yang C., Gao W., Zhu Y., Jiang Q., Journal of Electroanalytical Chemistry, 2016, 780, 26

    Article  CAS  Google Scholar 

  11. Chung S.-H., Manthiram A., Advanced Materials, 2014, 26, 7352

    Article  CAS  Google Scholar 

  12. Liu X., Wang D., Yang X., Zhao Z., Yang H., Feng M., Zhang W., Zheng W., ACS Applied Energy Materials, 2019, 2, 1428

    Article  CAS  Google Scholar 

  13. Jiang H., Liu X.-C., Wu Y., Shu Y., Gong X., Ke F.-S., Deng H., Angewandte Chemie-International Edition, 2018, 57, 3916

    Article  CAS  Google Scholar 

  14. Su Y., Manthiram A., Nature Communications, 2012, 3, 1166

    Article  Google Scholar 

  15. Elazari R., Salitra G., Garsuch A., Panchenko A., Aurbach D., Advanced Materials, 2011, 23, 5641

    Article  CAS  Google Scholar 

  16. Zhao M., Liu X., Zhang Q., Tian G., Huang J., Zhu W., Wei F., ACS Nano, 2012, 6, 10759

    Article  CAS  Google Scholar 

  17. Tian Y., Huang H., Liu G., Bi R., Zhang L., Chemical Communications, 2019, 55, 3243

    Article  CAS  Google Scholar 

  18. Xi K., He D., Harris C., Wang Y., Lai C., Li H., Coxon P. R., Ding S., Wang C., Kumar R. V., Advanced Science, 2019, 6, 1800815

    Article  Google Scholar 

  19. Zhong Y., Yin L., He P., Liu W., Wu Z., Wang H., Journal of the American Chemical Society, 2018, 140, 1455

    Article  CAS  Google Scholar 

  20. Li X., Gao B., Huang X., Guo Z., Li Q., Zhang X., Chu P. K., Huo K., ACS Applied Materials & Interfaces, 2019, 11, 2961

    Article  CAS  Google Scholar 

  21. Lv L., Guo C., Sun W., Wang Y., Small, 2018, 15, 1804338

    Article  Google Scholar 

  22. Sun W., Sun X., Peng Q., Wang H., Ge Y., Akhtar N., Huang Y., Wang K., Nanoscale Advances, 2019, 1, 1589

    Article  CAS  Google Scholar 

  23. Zhang H., Zhao Z., Hou Y., Tang Y., Liang J., Liu X., Zhang Z., Wang X., Qiu J., Journal of Materials Chemistry, 2019, 7, 9230

    Article  CAS  Google Scholar 

  24. Gao X., Yang X., Li M., Sun Q., Liang J., Luo J., Wang J., Li W., Liang J., Liu Y., Advanced Functional Materials, 2019, 29, 1806724

    Article  Google Scholar 

  25. Zhou T., Lv W., Li J., Zhou G., Zhao Y., Fan S., Liu B., Li B., Kang F., Yang Q., Energy and Environmental Science, 2017, 10, 1694

    Article  CAS  Google Scholar 

  26. Li Z., Zhang J., Guan B., Wang D., Liu L. M., Lou X. W., Nature Communications, 2016, 7, 13065

    Article  CAS  Google Scholar 

  27. Chen X., Glans P. A., Qiu X., Dayal S., Jennings W. D., Smith K. E., Burda C., Guo J., Journal of Electron Spectroscopy and Related Phenomena, 2008, 162, 67

    Article  CAS  Google Scholar 

  28. Fang R., Zhao S., Sun Z., Wang D., Cheng H., Li F., Advanced Materials, 2017, 29, 1606823

    Article  Google Scholar 

  29. Zhang S. S., Electrochimica Acta, 2012, 70, 344

    Article  CAS  Google Scholar 

  30. Xu R., Lu J., Amine K., Advanced Energy Materials, 2015, 5, 1500408

    Article  Google Scholar 

  31. Pu J., Shen Z., Zheng J., Wu W., Zhu C., Zhou Q., Zhang H., Pan F., Nano Energy, 2017, 37, 7

    Article  CAS  Google Scholar 

  32. Gulzar U., Li T., Bai X., Colombo M., Ansaldo A., Marras S., Prato M., Goriparti S., Capiglia C., Zaccaria R. P., ACS Applied Materials & Interfaces, 2018, 10, 5551

    Article  CAS  Google Scholar 

  33. Barchasz C., Lepretre J., Alloin F., Patoux S., Journal of Power Sources, 2012, 199, 322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Nos.51932003, 51872115), the 2020 International Cooperation Project of the Department of Science and Technology of Jilin Province, China (No.20200801001GH), the Program for the Development of Science and Technology of Jilin Province, China(No.20190201309JC), the Jilin Province/Jilin University co-Construction Project Funds for New Materials, China(Nos. SXGJSF2017-3, Branch-2/440050316A36), the Innovation Fund of 2018WNLOKF022, the Program for JLU Science and Technology Innovative Research Team, China(No.JLUSTIRT, 2017TD-09), the Fundamental Research Funds for the Central Universities of China, and the “Double-First Class” Discipline for Materials Science & Engineering, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Weitao Zheng.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic Supplementary Material

40242_2020_310_MOESM1_ESM.pdf

Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Qin, T., Zhang, X. et al. Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries. Chem. Res. Chin. Univ. 37, 259–264 (2021). https://doi.org/10.1007/s40242-020-0310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0310-0

Keywords

Navigation