Skip to main content

Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces

Abstract

The derivatives of aromatic cores bearing alkyl chains with different lengths are of potential interest in on-surface chemistry, and thus have been widely investigated both at liquid-solid interfaces and in vacuum. Here, we report on the structural evaluation of self-assembled 1,3,5-tri(4-dodecylphenyl)benzene(TDPB) molecules with increased molecular coverages on both Au(111) and Cu(111) surfaces. As observed on Au(111), rhombic and herringbone structures emerge successively depending on surface coverage. In the case of Cu(111), the same process of phase conversion is also observed, but with two distinct structures. In comparison, the self-assembled structures on Au(111) surface are packed more densely than that on Cu(111) surface under the same preparation conditions. This may fundamentally result from the higher adsorption energy of TDPB molecules on Cu(111), restricting their adjustment to optimize a thermodynamically favorable molecular packing.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Bain C. D., Whitesides G. M., J. Am. Chem. Soc., 1988, 110(17), 5897

    CAS  Article  Google Scholar 

  2. [2]

    Xia F., Ge H., Hou Y., Sun T., Chen L., Zhang G., Jiang L., Adv. Mater., 2007, 19(18), 2520

    CAS  Article  Google Scholar 

  3. [3]

    Xia F., Feng L., Wang S., Sun T., Song W., Jiang W., Jiang L., Adv. Mater., 2006, 18(4), 432

    CAS  Article  Google Scholar 

  4. [4]

    Tahara K., Furukawa S., Uji-i H., Uchino T., Ichikawa T., Zhang J., Mamdouh W., Sonoda M., De Schryver F. C., De Feyter S., Tobe Y., J. Am. Chem. Soc., 2006, 128(51), 16613

    CAS  Article  Google Scholar 

  5. [5]

    Xie Z. X., Xu X., Mao B. W., Tanaka K., Langmuir, 2002, 18(8), 3113

    CAS  Article  Google Scholar 

  6. [6]

    Kim K., Plass K. E., Matzger A. J., J. Am. Chem. Soc., 2005, 127(13), 4879

    CAS  Article  Google Scholar 

  7. [7]

    Shen X., Wei X., Tan P., Yu Y., Yang B., Gong Z., Zhang H., Lin H., Li Y., Li Q., Xie Y., Chi L., Small, 2015, 11(19), 2284

    CAS  Article  Google Scholar 

  8. [8]

    Mu Z., Rubner O., Bamler M., Blömker T., Kehr G., Erker G., Heuer A., Fuchs H., Chi L., Langmuir, 2013, 29(34), 10737

    CAS  Article  Google Scholar 

  9. [9]

    Kong X. H., Deng K., Yang Y. L., Zeng Q. D., Wang C., J. Phys. Chem. C, 2007, 111(26), 9235

    CAS  Article  Google Scholar 

  10. [10]

    Shen Y. T., Guan L., Zhu X. Y., Zeng Q. D., Wang C., J. Am. Chem. Soc., 2009, 131(17), 6174

    CAS  Article  Google Scholar 

  11. [11]

    Katsonis N., Marchenko A., Fichou D., J. Am. Chem. Soc., 2003, 125(45), 13682

    CAS  Article  Google Scholar 

  12. [12]

    Smith R. K., Lewis P. A., Weiss P. S., Prog. Surf. Sci., 2004, 75(1/2), 1

    CAS  Article  Google Scholar 

  13. [13]

    Chen T., Wang D., Wan L. J., Natl. Sci. Rev., 2015, 2(2), 205

    CAS  Article  Google Scholar 

  14. [14]

    Piot L., Marchenko A., Wu J., Müllen K., Fichou D., J. Am. Chem. Soc., 2005, 127(46), 16245

    CAS  Article  Google Scholar 

  15. [15]

    Adam D., Schuhmacher P., Simmerer J., Häussling L., Siemensmeyer K., Etzbachi K. H., Ringsdorf H., Haarer D., Nature, 1994, 371(6493), 141

    CAS  Article  Google Scholar 

  16. [16]

    Ciesielski A., Palma C. A., Bonini M., Samorì P., Adv. Mater., 2010, 22(32), 3506

    CAS  Article  Google Scholar 

  17. [17]

    Horcas I., Fernández R., Gómez-Rodríguez J. M., Colchero J., Gómez-Herrero J., Baro A. M., Rev. Sci. Instrum., 2007, 78(1), 013705

    CAS  Article  Google Scholar 

  18. [18]

    Furukawa S., Tahara K., De Schryver F. C., Van der Auweraer M., Tobe Y., De Feyter S., Angew. Chem. Int. Edit., 2007, 46(16), 2831

    CAS  Article  Google Scholar 

  19. [19]

    Lei S., Tahara K., De Schryver F. C., Van der Auweraer M., Tobe Y., De Feyter S., Angew. Chem. Int. Edit., 2008, 47(16), 2964

    CAS  Article  Google Scholar 

  20. [20]

    Chen T., Chen Q., Zhang X., Wang D., Wan L. J., J. Am. Chem. Soc., 2010, 132(16), 5598

    CAS  Article  Google Scholar 

  21. [21]

    Kühnle A., Curr. Opin. Colloid Interface Sci., 2009, 14(2), 157

    Article  Google Scholar 

  22. [22]

    Yin S. X., Wang C., Qiu X. H., Xu B., Bai C. L., Surf. Interface Anal., 2001, 32(1), 248

    CAS  Article  Google Scholar 

  23. [23]

    Cai L., Sun Q., Bao M., Ma H., Yuan C., Xu W., ACS Nano, 2017, 11(4), 3727

    CAS  Article  Google Scholar 

  24. [24]

    Qin D., Ge X. J., Lu J. T., Surf. Sci., 2018, 671, 6

    CAS  Article  Google Scholar 

  25. [25]

    Zhao W., Zhu H., Song H., Liu J., Chen Q., Wang Y., Wu K., J. Phys. Chem. C, 2018, 122(14), 7695

    CAS  Article  Google Scholar 

  26. [26]

    Stöhr M., Wahl M., Galka C. H., Riehm T., Jung T. A., Gade L. H., Angew. Chem. Int. Edit., 2005, 44(45), 7394

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lifeng Chi.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21673154, 21790053, and 51821002), the National Key R&D Program(MOST) of China(No.2017YFA0205002), the Project of the Collaborative Innovation Center of Suzhou Nano Science&Technology, China, the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD), China and the 111 Project, China.

Supporting information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, C., Duan, R. et al. Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces. Chem. Res. Chin. Univ. 36, 685–689 (2020). https://doi.org/10.1007/s40242-020-0210-3

Download citation

Keywords

  • Self-assembly
  • Scanning tunneling microscope
  • Phase transition
  • Adsorption energy