Skip to main content
Log in

Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The derivatives of aromatic cores bearing alkyl chains with different lengths are of potential interest in on-surface chemistry, and thus have been widely investigated both at liquid-solid interfaces and in vacuum. Here, we report on the structural evaluation of self-assembled 1,3,5-tri(4-dodecylphenyl)benzene(TDPB) molecules with increased molecular coverages on both Au(111) and Cu(111) surfaces. As observed on Au(111), rhombic and herringbone structures emerge successively depending on surface coverage. In the case of Cu(111), the same process of phase conversion is also observed, but with two distinct structures. In comparison, the self-assembled structures on Au(111) surface are packed more densely than that on Cu(111) surface under the same preparation conditions. This may fundamentally result from the higher adsorption energy of TDPB molecules on Cu(111), restricting their adjustment to optimize a thermodynamically favorable molecular packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bain C. D., Whitesides G. M., J. Am. Chem. Soc., 1988, 110(17), 5897

    Article  CAS  Google Scholar 

  2. Xia F., Ge H., Hou Y., Sun T., Chen L., Zhang G., Jiang L., Adv. Mater., 2007, 19(18), 2520

    Article  CAS  Google Scholar 

  3. Xia F., Feng L., Wang S., Sun T., Song W., Jiang W., Jiang L., Adv. Mater., 2006, 18(4), 432

    Article  CAS  Google Scholar 

  4. Tahara K., Furukawa S., Uji-i H., Uchino T., Ichikawa T., Zhang J., Mamdouh W., Sonoda M., De Schryver F. C., De Feyter S., Tobe Y., J. Am. Chem. Soc., 2006, 128(51), 16613

    Article  CAS  Google Scholar 

  5. Xie Z. X., Xu X., Mao B. W., Tanaka K., Langmuir, 2002, 18(8), 3113

    Article  CAS  Google Scholar 

  6. Kim K., Plass K. E., Matzger A. J., J. Am. Chem. Soc., 2005, 127(13), 4879

    Article  CAS  Google Scholar 

  7. Shen X., Wei X., Tan P., Yu Y., Yang B., Gong Z., Zhang H., Lin H., Li Y., Li Q., Xie Y., Chi L., Small, 2015, 11(19), 2284

    Article  CAS  Google Scholar 

  8. Mu Z., Rubner O., Bamler M., Blömker T., Kehr G., Erker G., Heuer A., Fuchs H., Chi L., Langmuir, 2013, 29(34), 10737

    Article  CAS  Google Scholar 

  9. Kong X. H., Deng K., Yang Y. L., Zeng Q. D., Wang C., J. Phys. Chem. C, 2007, 111(26), 9235

    Article  CAS  Google Scholar 

  10. Shen Y. T., Guan L., Zhu X. Y., Zeng Q. D., Wang C., J. Am. Chem. Soc., 2009, 131(17), 6174

    Article  CAS  Google Scholar 

  11. Katsonis N., Marchenko A., Fichou D., J. Am. Chem. Soc., 2003, 125(45), 13682

    Article  CAS  Google Scholar 

  12. Smith R. K., Lewis P. A., Weiss P. S., Prog. Surf. Sci., 2004, 75(1/2), 1

    Article  CAS  Google Scholar 

  13. Chen T., Wang D., Wan L. J., Natl. Sci. Rev., 2015, 2(2), 205

    Article  CAS  Google Scholar 

  14. Piot L., Marchenko A., Wu J., Müllen K., Fichou D., J. Am. Chem. Soc., 2005, 127(46), 16245

    Article  CAS  Google Scholar 

  15. Adam D., Schuhmacher P., Simmerer J., Häussling L., Siemensmeyer K., Etzbachi K. H., Ringsdorf H., Haarer D., Nature, 1994, 371(6493), 141

    Article  CAS  Google Scholar 

  16. Ciesielski A., Palma C. A., Bonini M., Samorì P., Adv. Mater., 2010, 22(32), 3506

    Article  CAS  Google Scholar 

  17. Horcas I., Fernández R., Gómez-Rodríguez J. M., Colchero J., Gómez-Herrero J., Baro A. M., Rev. Sci. Instrum., 2007, 78(1), 013705

    Article  CAS  Google Scholar 

  18. Furukawa S., Tahara K., De Schryver F. C., Van der Auweraer M., Tobe Y., De Feyter S., Angew. Chem. Int. Edit., 2007, 46(16), 2831

    Article  CAS  Google Scholar 

  19. Lei S., Tahara K., De Schryver F. C., Van der Auweraer M., Tobe Y., De Feyter S., Angew. Chem. Int. Edit., 2008, 47(16), 2964

    Article  CAS  Google Scholar 

  20. Chen T., Chen Q., Zhang X., Wang D., Wan L. J., J. Am. Chem. Soc., 2010, 132(16), 5598

    Article  CAS  Google Scholar 

  21. Kühnle A., Curr. Opin. Colloid Interface Sci., 2009, 14(2), 157

    Article  Google Scholar 

  22. Yin S. X., Wang C., Qiu X. H., Xu B., Bai C. L., Surf. Interface Anal., 2001, 32(1), 248

    Article  CAS  Google Scholar 

  23. Cai L., Sun Q., Bao M., Ma H., Yuan C., Xu W., ACS Nano, 2017, 11(4), 3727

    Article  CAS  Google Scholar 

  24. Qin D., Ge X. J., Lu J. T., Surf. Sci., 2018, 671, 6

    Article  CAS  Google Scholar 

  25. Zhao W., Zhu H., Song H., Liu J., Chen Q., Wang Y., Wu K., J. Phys. Chem. C, 2018, 122(14), 7695

    Article  CAS  Google Scholar 

  26. Stöhr M., Wahl M., Galka C. H., Riehm T., Jung T. A., Gade L. H., Angew. Chem. Int. Edit., 2005, 44(45), 7394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Chi.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21673154, 21790053, and 51821002), the National Key R&D Program(MOST) of China(No.2017YFA0205002), the Project of the Collaborative Innovation Center of Suzhou Nano Science&Technology, China, the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD), China and the 111 Project, China.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, C., Duan, R. et al. Two-dimensional Molecular Phase Transition of Alkylated-TDPB on Au(111) and Cu(111) Surfaces. Chem. Res. Chin. Univ. 36, 685–689 (2020). https://doi.org/10.1007/s40242-020-0210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0210-3

Keywords

Navigation