Skip to main content
Log in

Effect of Acid Treatment on Electrocatalytic Performance of PtNi Catalyst

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this paper, we describe the synthesis of the AC-PtNi/G catalysts with graphene as the carrier, via the alcohol reduction and the sulfuric acid treatment. The prepared catalysts were microscopically characterized by X-ray diffractometry(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM), electron spectroscopy(EDAX), and transmission electron micros-copy(TEM). We tested the electrochemical performance of the prepared catalysts using an electrochemical workstation and in situ infrared spectroscopy(FTIR). The results showed that the acid-treated AC-PtNi/G catalysts had a more uniform dispersion and with the increased of treatment time, the particle size of the catalyst became smaller. And the electrocatalytic performance of the AC-PtNi/G-48h catalyst treated with sulfuric acid for 48 h was significantly better than that of the untreated PtNi/G catalyst. Its electrochemically active surface area was 76.63 m2/g, and the peak current density value for catalytic oxidation of ethanol was 1218.83 A/g, which was 10 times that of ordinary commercial Pt/C catalyst. The steady-state current density value of 1100 s was 358.77 A/g, and it has excellent anti-CO toxicity performance. It was determined that a sulfuric acid treatment controlled catalyst particle size and increased the electrocatalytic activity of the catalytic oxidation of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W. X., Gui H., Lee J. Y., Liu Z. Y., Chem. J. Chinese Universities, 2003, 24(12), 2285

    CAS  Google Scholar 

  2. Akhairi M. A. F., Kamarudin S. K., Int. J. Hydrogen Energy, 2016, 41(7), 4214

    Article  CAS  Google Scholar 

  3. Hameed R. M. A., Amin R. S., E-Khatib K. M., Fetohi A. E., Appl. Surf. Sci., 2016, 367, 382

    Article  CAS  Google Scholar 

  4. Wang X. Y., Jiang Y. S., Chem. Res. Chinese Universities, 2011, 27(1), 154

    Google Scholar 

  5. Antoniassi R. M., Silva J. C. M., Oliveira Neto A., Spinacé E.V., Appl. Catal. B: Environmental, 2017, 218, 91

    Article  CAS  Google Scholar 

  6. Liu C. P., Yang H., Xing W., Lu T. H., Chem. J. Chinese Universities, 2002, 23(7), 1367

    CAS  Google Scholar 

  7. D’Urso C., Bonesi A., Triaca W. E., Castro Luna A. M. Aricò A.S., Int. J. Electrochemical Science, 2016, 7(10), 9909

    Google Scholar 

  8. Zhou W. J., Li W. Z., Zhou Z. H., Song S. Q., Xin Q., Chem. J. Chinese Universities, 2003, 24(5), 858

    CAS  Google Scholar 

  9. Ishitobi H., Ino Y., Nakagawa N., Int. J. Hydrogen Energy, 2017, 42(43), 26897

    Article  CAS  Google Scholar 

  10. Wang X. Y., Zhang J. C., Zhu H., Chinese J. Catal., 2011, 32(1), 74

    Article  CAS  Google Scholar 

  11. Soares L. A., Morais C., Napporn T. W., J. Power Sources, 2016, 315, 47

    Article  CAS  Google Scholar 

  12. Medina R. A., Ruiz C. B., Villica A. M., Galindo Esquivel I. R., Ramírez-Minguela J. J., Appl. Surf. Sci., 2018, 456, 204

    Article  CAS  Google Scholar 

  13. Linares J. J., Zignani S. C., Rocha T. A., Gonzalez E. R., J. Appl. Electrochem., 2013, 43(2), 147

    Article  CAS  Google Scholar 

  14. Dong H. Z., Dong L. F., J. Inorg. Organomet. Polym. Materials, 2011, 21(4), 754

    Article  CAS  Google Scholar 

  15. Ge X. B., Chen L. Y., Kang J. L., Fujita T., Hirata A., Zhang W., Jiang J. H., Chen M. W., Adv. Funct. Mater., 2013, 23(33), 4156

    Article  CAS  Google Scholar 

  16. Antoniassi R. M., Neto A. O., Linardi M., Spinace E. V., Int. J. Hydrogen Energy, 2013, 38(27), 12069

    Article  CAS  Google Scholar 

  17. Vigier F., Coutanceau C., Hahn F., Belgsir E. M., Lamy C., J. Electroanal. Chem., 2004, 563(1), 81

    Article  CAS  Google Scholar 

  18. Neto A. O., Verjulio-Silva R. W. R., Linardi M., Spinacé E. V., Ionics, 2010, 16(1), 85

    Article  CAS  Google Scholar 

  19. De Souza R. F. B., Parreira L. S., Silva J. C. M., Sirnoes F.C, Caegaro M. L., Giz M. J. Camara G. A., Neto A. O., Santos M. C., Int. J. Hydrogen Energy, 2011, 36(18), 11519

    Article  CAS  Google Scholar 

  20. Benítez R., Chaparro A. M., Daza L., J. Power Sources, 2005, 151, 2

    Article  CAS  Google Scholar 

  21. Wang X.H., Yin S.L., Ma G. Y., Ruan S. D., Ji W. J., Mater. Rev., 2015, 14, 11

    Google Scholar 

  22. Zhang Z. Y., Xin L., Sun K., Li W. Z., Int. J. Hydrogen Energy, 2011, 36(20), 12686

    Article  CAS  Google Scholar 

  23. Manzo-Robledo A., Boucher A. C., Pastor E., Alonso-Vante N., Fuel Cells, 2010, 2, 109

    Article  Google Scholar 

  24. Xie J. F., Zhang H., Li S., Wang R. X., Sun X., Zhou M., Zhou J. F., Lou X. W. D., Xie Y., Adv. Mater., 2013, 25(40), 5807

    Article  CAS  PubMed  Google Scholar 

  25. Xia C., Jiang Q., Zhao C., Hedhili M. N., Alshareef H. N., Adv. Mater., 2016, 28(1), 77

    Article  CAS  PubMed  Google Scholar 

  26. Huang M., Wu W., Wu C., Guan L., J. Mater. Chem. A, 2015, 3(9), 4777

    Article  CAS  Google Scholar 

  27. Sun S. J., Gao Q. M., Rare Metals, 2011, 30(1), 42

    Article  CAS  Google Scholar 

  28. Kim Y. M., Park K. W., Choi J. H., Park I. S., Sung Y. E., Electrochem. Commun., 2003, 5(7), 571

    Article  CAS  Google Scholar 

  29. Wang J. J., Yin G. P., Wang G. G., Wang Z. B., Gao Y. Z., Electrochem. Commun., 2008, 10(6), 831

    Article  CAS  Google Scholar 

  30. Lee S. W., Chen S., Sheng W. C., Yabuuchi N., Yang S. H., J. Am. Chem. Soc., 2009, 131(43), 15669

    Article  CAS  PubMed  Google Scholar 

  31. Kim H., Park J. N., Lee W. H., Catal. Today, 2003, 87, 237

    Article  CAS  Google Scholar 

  32. Toda T., Igarashi H., Watanabe M., J. Electroanal. Chem., 1999, 460, 258

    Article  CAS  Google Scholar 

  33. Park K. W., Choi J. H., Kwon B. K., Lee S. A., Sung Y. E., Ha H. Y., Hong S. A., Kim H., Wieckowski A., J. Phys. Chem. B, 2002, 106(8), 1869

    Article  CAS  Google Scholar 

  34. Seger B., Kamat P.V., J. Phys. Chem. C, 2009, 113(19), 7990

    Article  CAS  Google Scholar 

  35. Sogaard M., Odgaard M., Skou E. M., Solid State Ionics, 2001, 145(1), 31

    Article  CAS  Google Scholar 

  36. Deng Y. H., Zhang X. Z., Yu K. Y., Yan X., Du J. Y., Huang H. M., Fan C. A., Chem. Commun., 2016, 52(22), 4183

    Article  CAS  Google Scholar 

  37. Sun S. G., Chen A. C., Huang T. S., Li J. B., Tian Z. W., J. Electroanal. Chem., 1992, 340, 213

    Article  CAS  Google Scholar 

  38. Wang X. H., Ji W. J., Ruan S. D., Cao C., Chen M. J., B. Chin. Ceram. Soc., 2015, 34(10), 2786

    CAS  Google Scholar 

  39. Huang M. H., Jiang Y. Y., Jin C. H., Ren J., Zhou Z. Y., Guan L. H., Electrochim. Acta, 2014, 125(10), 29

    Article  CAS  Google Scholar 

  40. Sousa R., Flávio C., Eduardo G. C., Ernesto R. G., J. Solid State Electrochem., 2007, 11(11), 1549

    Article  CAS  Google Scholar 

  41. Huang X., Zhao Z., Fan J., Tan Y., Zheng N., J. Am. Chem. Soc., 2011, 133(13), 4718

    Article  CAS  PubMed  Google Scholar 

  42. Lai S. C. S., Kleyn S. E. F., Rosca V., Koper M. T. M., J. Phys. Chem. C, 2008, 112(48), 19080

    Article  CAS  Google Scholar 

  43. Meli G., Leger J. M., Lamy C., Durand R., J. Appl. Electrochem., 1993, 23(3), 197

    Article  CAS  Google Scholar 

  44. Sun Q. Z., Kim S., Electrochim. Acta, 2015, 153, 566

    Article  CAS  Google Scholar 

  45. Ribadeneira E., Hoyos B. A., J. Power Sources, 2008, 180(1), 238

    Article  CAS  Google Scholar 

  46. Zhou Z. Y., Shang S. J., Tian N., Wu B. H., Zheng N. F., Xu B. B., Chen C., Wang H. H., Xiang D. M., Sun S. G., Electrochem. Commun., 2012, 22, 61

    Article  CAS  Google Scholar 

  47. Deng Y. J., Tian N., Zhou Z. Y., Huang R., Liu Z. L., Xiao J., Sun S. G., Chem. Sci., 2012, 3(4), 1157

    Article  CAS  Google Scholar 

  48. Leung L. W. H., Weaver M. J., ChemInform, 1988, 19(46), 4019

    Article  Google Scholar 

  49. Vigier F., Coutanceau C., Hahn F., Belgsir E. M., Lamy C., J. Electroanal. Chem., 2004, 563(1), 81

    Article  CAS  Google Scholar 

  50. Zhou Z. Y., Huang Z. Z., Chen D. J., Wang Q., Tian N., Sun S. G., Angew. Chem. Internat. Ed., 2010, 122(2), 421

    Article  Google Scholar 

  51. Del C.V., Berná A., Tremiliosi-Filho G., Herrero E., Feliu J. M., Phys. Chem. Chem. Phys., 2008, 10, 3766

    Article  CAS  Google Scholar 

  52. Brooksby P. A., Fawcett W. R., Anal. Chem., 2001, 73, 1155

    Article  CAS  Google Scholar 

  53. Liu F. Z., Yan M. M., Zhou W., Jiang Z. Y., Electrochem. Commun., 2003, 5, 276

    Article  CAS  Google Scholar 

  54. Cheng Y. Y., Yu J., Wu Y. J., Chinese J. Anal. Chem., 2002, 12, 1426

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Nos.51864040, 51974167) and the Natural Science Fund of Inner Mongolia Autonomous Region, China (No. 2018LH02006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihua Guo.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Qian, F., An, S. et al. Effect of Acid Treatment on Electrocatalytic Performance of PtNi Catalyst. Chem. Res. Chin. Univ. 37, 686–695 (2021). https://doi.org/10.1007/s40242-020-0207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0207-y

Keywords

Navigation