Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries

Abstract

High-energy-density lithium-sulfur(Li-S) batteries are drawing dramatic research interests to fulfill the ever-increasing demands of electrical vehicles. However, challenges with the insulating property of sulfur and its lithiation products and its large volume expansion, and the shuttle effect of lithium polysulfides, hinder the commercial application of Li-S batteries. Lots of material design concepts have been developed to address the failure modes. Among them, hollow micro-/nanostructures with abundant compositional and geometrical feasibility have been proved fruitful in addressing the current obstacles of Li-S batteries. Here, typical examples of designing hollow micro-/nanostructures to address the problems of Li-S batteries and simultaneously improve the practical capacity and lifespan are highlighted. In particular, the great effect of structural engineering on minimizing volume change, inhibiting the shuttle effect and catalyzing polysulfide conversion are discussed systematically. Finally, future directions of hollow nanostructure design to enhance the progress of Li-S batteries are also provided.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Ji X. L., Lee K. T., Nazar L. F., Nat. Mater., 2009, 8, 500

    CAS  PubMed  Article  Google Scholar 

  2. [2]

    Elazari R., Salitra G., Garsuch A., Panchenko A., Aurbach D., Adv. Mater., 2011, 23, 5641

    CAS  PubMed  Article  Google Scholar 

  3. [3]

    Zhao M. Q., Zhang Q., Huang J. Q., Tian G. L., Nie J. Q., Peng H. J., Wei F., Nat. Commun., 2014, 5, 1

    Google Scholar 

  4. [4]

    Zhang J., Yang C. P., Yin Y. X., Wan L. J., Guo Y. G., Adv. Mater., 2016, 28, 9539

    CAS  PubMed  Article  Google Scholar 

  5. [5]

    Lyu Z. Y., Xu D., Yang L. J., Che R. C., Feng R., Zhao J., Li Y., Wu Q., Wang X. Z., Hu Z., Nano Energy, 2015, 12, 657

    CAS  Article  Google Scholar 

  6. [6]

    Evers S., Yim T., Nazar L. F., J. Phys. Chem. C, 2012, 116, 19653

    CAS  Article  Google Scholar 

  7. [7]

    Zhang J., Shi Y., Ding Y., Zhang W. K., Yu G. H., Nano Lett., 2016, 16, 7276

    CAS  PubMed  Article  Google Scholar 

  8. [8]

    Shi Y., Peng L. L., Ding Y., Zhao Y., Yu G. H., Chem. Soc. Rev., 2015, 44, 6684

    CAS  PubMed  Article  Google Scholar 

  9. [9]

    Lai X. Y., Halpert J. E., Wang D., Energy Environ. Sci., 2012, 5, 5604

    CAS  Article  Google Scholar 

  10. [10]

    Qi J., Lai X. Y., Wang J. Y., Tang H. J., Ren H., Yang Y., Jin Q., Zhang L. J., Yu R. B., Ma G. H., Su Z. G., Zhao H. J., Wang D., Chem. Soc. Rev., 2015, 44, 6749

    CAS  PubMed  Article  Google Scholar 

  11. [11]

    Mao D., Wan J. W., Wang J. Y., Wang D., Adv. Mater., 2019, 31, 1802874

    Article  CAS  Google Scholar 

  12. [12]

    Wang J. Y., Tang H. J., Zhang L. J., Ren H., Yu R. B., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P., Zhang Y., Wen Y. R., Gu L., Ma G. H., Su Z. G., Tang Z. Y., Zhao H. J., Wang D., Nat. Energy, 2016, 1, 16050

    CAS  Article  Google Scholar 

  13. [13]

    Jiao C. W., Wang Z. M., Zhao X. X., Wang H., Wang J., Yu R. B., Wang D., Angew. Chem. Int. Ed., 2019, 58, 996

    CAS  Article  Google Scholar 

  14. [14]

    Wang J. Y., Yang N. L., Tang H. J., Dong Z. H., Jin Q., Yang M., Kisailus D., Zhao H. J., Tang Z. Y., Wang D., Angew. Chem. Int. Ed., 2013, 52, 6417

    CAS  Article  Google Scholar 

  15. [15]

    Ren H., Yu R. B., Wang J. Y., Jin Q., Yang M., Mao D., Kisailus D., Zhao H. J., Wang D., Nano Lett., 2014, 14, 6679

    CAS  PubMed  Article  Google Scholar 

  16. [16]

    Zhao X. X., Wang J. Y., Yu R. B., Wang D., J. Am. Chem. Soc., 2018, 140, 17114

    CAS  PubMed  Article  Google Scholar 

  17. [17]

    Wang J. Y., Tang H. J., Ren H., Yu R. B., Qi J., Mao D., Zhao H. J., Wang D., Adv. Sci., 2014, 1, 1400011

    Article  CAS  Google Scholar 

  18. [18]

    Zhao X. X., Yu R. B., Tang H. J., Mao D., Qi J., Wang B., Zhang Y., Zhao H. J., Hu W. P., Wang D., Adv. Mater., 2017, 29, 1700550

    Article  CAS  Google Scholar 

  19. [19]

    Xu S. M., Hessel C. M., Ren H., Yu R. B., Jin Q., Yang M., Zhao H. J., Wang D., Energy Environ. Sci., 2014, 7, 632

    CAS  Article  Google Scholar 

  20. [20]

    Wang J. Y., Tang H. J., Wang H., Yu R. B., Wang D., Mater. Chem. Front., 2017, 1, 414

    CAS  Article  Google Scholar 

  21. [21]

    Wang D. W., Zeng Q. C., Zhou G. M., Yin L. C., Li F., Cheng H. M., Gentle I. R., Lu G. Q. M., J. Mater. Chem. A, 2013, 1, 9382

    CAS  Article  Google Scholar 

  22. [22]

    He G., Evers S., Liang X., Cuisinier M., Garsuch A., Nazar L. F., ACS Nano, 2013, 7, 10920

    CAS  PubMed  Article  Google Scholar 

  23. [23]

    Zhang C. F., Wu H. B., Yuan C. Z., Guo Z. P., Lou X. W., Angew. Chem. Int. Ed., 2012, 51, 9592

    CAS  Article  Google Scholar 

  24. [24]

    Seh Z. W., Li W. Y., Cha J. J., Zheng G. Y., Yang Y., McDowell M. T., Hsu P. C., Cui Y., Nat. Commun., 2013, 4, 1331

    Article  CAS  Google Scholar 

  25. [25]

    Luo D., Li G. R., Deng Y. P., Zhang Z., Li J. D., Liang R. L., Li M., Jiang Y., Zhang W. W., Liu Y. S., Lei W., Yu A. P., Chen Z. W., Adv. Energy Mater., 2019, 9, 1900228

    Article  CAS  Google Scholar 

  26. [26]

    Mi K., Jiang Y., Feng J. K., Qian Y. T., Xiong S. L., Adv. Funct. Mater., 2016, 26, 1571

    CAS  Article  Google Scholar 

  27. [27]

    Pei F., An T. H., Zang J., Zhao X. J., Fang X. L., Zheng M. S., Dong Q. F., Zheng N. F., Adv. Energy Mater., 2016, 6, 1502539

    Article  CAS  Google Scholar 

  28. [28]

    Liang Z., Zheng G. Y., Li W. Y., Seh Z. W., Yao H. B., Yan K., Kong D. S., Cui Y., ACS Nano, 2014, 8, 5249

    CAS  PubMed  Article  Google Scholar 

  29. [29]

    Salhabi E. H. M., Zhao J. L., Wang J. Y., Yang M., Wang B., Wang D., Angew. Chem. Int. Ed., 2019, 58, 9078

    CAS  Article  Google Scholar 

  30. [30]

    Chen T., Ma L. B., Cheng B. R., Chen R. P., Hu Y., Zhu G. Y., Wang Y. R., Liang J., Tie Z. X., Liu J., Jin Z., Nano Energy, 2017, 38, 239

    CAS  Article  Google Scholar 

  31. [31]

    Gao X. J., Yang X. F., Li M. S., Sun Q., Liang J. N., Luo J., Wang J. W., Li W. H., Liang J. W., Liu Y. L., Wang S. Z., Hu Y. F., Xiao Q. F., Li R. Y., Sham T. K., Sun X. L., Adv. Funct. Mater., 2019, 29, 1806724

    Article  CAS  Google Scholar 

  32. [32]

    Ye C., Zhang L., Guo C. X., Li D. D., Vasileff A., Wang H. H., Qiao S. Z., Adv. Funct. Mater., 2017, 27, 1702524

    Article  CAS  Google Scholar 

  33. [33]

    Chung S. H., Manthiram A., J. Phys. Chem. Lett., 2014, 5, 1978

    CAS  PubMed  Article  Google Scholar 

  34. [34]

    Fang D. L., Wang Y. L., Liu X. Z., Yu J., Qian C., Chen S. M., Wang X., Zhang S. J., ACS Nano, 2019, 13, 1563

    CAS  PubMed  Google Scholar 

  35. [35]

    Chen X. X., Ding X. Y., Wang C. S., Feng Z. Y., Xu L. Q., Gao X., Zhai Y. J., Wang D. B., Nanoscale, 2018, 10, 13694

    CAS  PubMed  Article  Google Scholar 

  36. [36]

    Li S. S., Jin B., Li H., Dong C. W., Zhang B., Xu J. H., Jiang Q., J. Electrochem. Soc., 2017, 806, 41

    CAS  Google Scholar 

  37. [37]

    Ma J. S., Yu M. P., Ye H. Y., Song H. Q., Wang D. X., Zhao Y. T., Gong W., Qiu H., Mater. Chem. Front., 2019, 3, 1807

    CAS  Article  Google Scholar 

  38. [38]

    Zhou G. M., Li L., Ma C. Q., Wang S. G., Shi Y., Koratkar N., Ren W. C., Li F., Cheng H. M., Nano Energy, 2015, 11, 356

    CAS  Article  Google Scholar 

  39. [39]

    Du H. P., Zhang Z. H., He J. J., Cui Z. L., Chai J. C., Ma J., Yang Z., Huang C. S., Cui G. L., Small, 2017, 13, 1702277

    Article  CAS  Google Scholar 

  40. [40]

    Xu F., Tang Z. W., Huang S. Q., Chen L. Y., Liang Y. R., Mai W. C., Zhong H., Fu R. W., Wu D. C., Nat Commun., 2015, 6, 7221

    PubMed  PubMed Central  Article  Google Scholar 

  41. [41]

    Dong Y., Ben T., Chem. Res. Chinese Universities, 2019, 35(4), 654

    CAS  Article  Google Scholar 

  42. [42]

    Paraknowitsch J. P., Thomas A., Energy Environ. Sci., 2013, 6, 2839

    CAS  Article  Google Scholar 

  43. [43]

    Zhou W. D., Xiao X. C., Cai M., Yang L., Nano Lett., 2014, 14, 5250

    CAS  PubMed  Article  Google Scholar 

  44. [44]

    Mi K., Chen S. W., Xi B. J., Kai S. S., Jiang Y., Feng J. K., Qian Y. T., Xiong S. L., Adv. Funct. Mater., 2017, 27, 1604265

    Article  CAS  Google Scholar 

  45. [45]

    Peng Y. Y., Zhang Y. Y., Huang J. X., Wang Y. H., Li H., Hwang B. J., Zhao J. B., Carbon, 2017, 124, 23

    CAS  Article  Google Scholar 

  46. [46]

    Zhou G. M., Zhao Y. B., Manthiram A., Adv. Energy Mater., 2015, 5, 1402263

    Article  CAS  Google Scholar 

  47. [47]

    Wang C., Wang J. Y., Hu W. P., Wang D., Chem. Res. Chinese Universities, 2020, 36(1), 68

    CAS  Article  Google Scholar 

  48. [48]

    Jeong Y. C., Kim J. H., Nam S., Park C. R., Yang S. J., Adv. Funct. Mater., 2018, 28, 1707411

    Article  CAS  Google Scholar 

  49. [49]

    Fan W., Zhang L. S., Liu T. X., Mater. Chem. Front., 2018, 2, 235

    CAS  Article  Google Scholar 

  50. [50]

    Su Y. S., Manthiram A., Nat. Commun., 2012, 3, 1166

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiangyan Wang or Dan Wang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21820102002, 21590795, 51661165013) and the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YZ201623).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yang, M., Yang, N. et al. Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries. Chem. Res. Chin. Univ. 36, 313–319 (2020). https://doi.org/10.1007/s40242-020-0115-2

Download citation

Keywords

  • Hollow
  • Micro-/nanostructure
  • Lithium-sulfur battery