Skip to main content
Log in

Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Gold nanostars(Au NSs) are asymmetric anisotropic nanomaterials with sharp edge structure. As a promising branched nanomaterial, Au NS has excellent plasmonic absorption and scattering properties. In order to tune the plasmonic photothermal and surface-enhanced Raman scattering(SERS) activity of Au NSs to obtain the desired characteristics, the effects of reagents on the local surface plasmon resonance(LSPR) bands of Au NSs were studied and the morphology and size were regulated. Nanoparticles with different sharp edges were synthesized to make their local plasmon resonance mode tunable in the visible and near-infrared region. The effects of the number and sharpness of different tips under the control of AgNO3 on the photothermal response of Au NSs and the SERS activity and their mechanism were discussed in detail. The results show that as the length of the branch tip becomes longer and the sharpness increases, the plasmonic photothermal effect of Au NSs is strengthened, and the photothermal conversion efficiency is the highest up to 40% when the length of Au NSs is the longest. Au NSs with high SERS activity are used for the Raman detection substrate. Based on this property, the quantitative detection of the pesticide thiram is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li M. Y., Li L. L., Zhan C. Y., Kohane D. S., Theranostics, 2016, 6, 2306

    Article  CAS  Google Scholar 

  2. Amane S., Judith L., Lakshminarayana P., Luis M. L., Nanoscale, 2014, 6, 9817

    Article  Google Scholar 

  3. Song W. Z., Li H., Zhang Y., He D., Li Y. Z., Huang Z. Z., Liu X., Yin W. Z., Chem. J. Chinese Universities, 2018, 39(12), 2644

    CAS  Google Scholar 

  4. Li R. Y., Liu L., Bei H. X., Li Z. J., Biosens. Bioelectron., 2016, 79, 457

    Article  CAS  Google Scholar 

  5. An J., Yang X. Q., Cheng K., Song X. L., Zhang L., Li C., Zhang X. S., Xuan Y., Song Y. Y., Fang B. Y., Hou X. L., Zhao Y. D., Liu B., ACS Appl. Mater. Interfaces, 2017, 9, 41748

    Article  CAS  Google Scholar 

  6. Geun W. K., Ji W. H., Photochem. Photobiol. Sci., 2019, 18, 1430

    Article  Google Scholar 

  7. Pu Y. H., Zhao Y. W., Zheng P. Li M., Inorg. Chem., 2018, 57, 8599

    Article  CAS  Google Scholar 

  8. Gabudean A. M., Biro D., J. Mol. Struct., 2011, 993, 420

    Article  CAS  Google Scholar 

  9. Theodorou I. G., Jawad Z. A., Jiang Q., Aboagye E. O., Porter A. E., Ryan M. P., Xie F., Chem. Mater., 2017, 29, 6916

    Article  CAS  Google Scholar 

  10. Shao L., Susha A. S., Cheung L. S., Sau T. K., Rogach A. L., Wang J. F., Langmuir, 2012, 28, 8979

    Article  CAS  Google Scholar 

  11. Niu W., Chua Y. A., Zhang W., Huang H., Lu X., J. Am. Chem. Soc., 2015, 137, 10460

    Article  CAS  Google Scholar 

  12. Chatterjee S., Ringane A. B., Arya A., Das G. M., Dantham V. R., Laha R., Hussian S., J. Nano. Res., 2016, 18, 242

    Article  Google Scholar 

  13. Kedia A., Kumar P. S., RSC Advances, 2014, 4, 4782

    Article  CAS  Google Scholar 

  14. Liu J., Cui H. B., Yan S. Y., Jing X. N., Wang D. Q., Meng L. J., Mater. Today Commun., 2018, 16, 97

    Article  CAS  Google Scholar 

  15. Zhou Z. J., Yan Y., Hu K. W., Zou Y., Li Y. W., Ma R., Zhang Q., Cheng Y. Y., Biomaterials, 2017, 141, 116

    Article  CAS  Google Scholar 

  16. Ahmad R., Fu J., He N. Y., Li S., J. Nanosci. Nanotechnol., 2016, 16, 67

    Article  CAS  Google Scholar 

  17. Zeng J. H., Wu M., Lan S. Y., Li J., Zhang X. L., Liu J. F., Wei Z. W., Zeng Y. Y., J. Mater. Chem. B, 2018, 6, 7889

    Article  CAS  Google Scholar 

  18. Liu C. J., Guo X. L., Ruan C. P., Hu H. L., Jiang B. P., Liang H., Shen X. C., Acta Biomater., 2019, 96, 281

    Article  CAS  Google Scholar 

  19. Li J., Li J. J., Zhang J., Wang X., Kawazoea N., Chen G., Nanoscale, 2016, 8, 7992

    Article  CAS  Google Scholar 

  20. Atta S., Beetz M., Fabris L., Nanoscale, 2019, 11, 2946

    Article  CAS  Google Scholar 

  21. Tang W., Deng L. J., Xu K. W., Lu J., Surf. Coat. Technol., 2007, 201, 5944

    Article  CAS  Google Scholar 

  22. Svorcik V., Kolska Z., Luxbacher T., Mistrikd J., Mater. Lett., 2010, 64, 611

    Article  CAS  Google Scholar 

  23. Holzwarth U., Gibson N., Nat. Nanotechnol., 2011, 6, 534

    Article  CAS  Google Scholar 

  24. Guo Y. H., Wu J., Li J., Ju H. X., Biosens. Bioelectron., 2016, 78, 267

    Article  CAS  Google Scholar 

  25. Ndokoye P., Li X. Y., Zhao Q. D., Li T. T., Tade M. O., Liu S. M., J. Colloid Interface Sci., 2016, 462, 341

    Article  CAS  Google Scholar 

  26. You Y. H., Lin Y. F., Nirosha B., Chang H. T., Huang Y. F., Nanotheranostics, 2019, 3, 266

    Article  Google Scholar 

  27. Savchuk O. L., Carvajal J. J., Massons J., Aguilo M., Diaz F., Carbon, 2016, 103, 134

    Article  CAS  Google Scholar 

  28. Wang B., Feng G. X., Seifrid M., Wang M., Liu B., Bazan G. C., Angew. Chem. Int. Ed., 2017, 56, 16063

    Article  CAS  Google Scholar 

  29. Wang S. S., Hu W. C., Liu F. F., Xu Q. Y., Wang C., Electrochim. Acta, 2019, 301, 359

    Article  CAS  Google Scholar 

  30. Guo S. J., Wang E., J. Colloid Interface Sci., 2007, 315, 795

    Article  CAS  Google Scholar 

  31. Ankudze B., Philip A., Pakkanen T. T., Matikainen A., Vahimaa P., Appl. Surf. Sci., 2016, 387, 595

    Article  CAS  Google Scholar 

  32. Park S. Y., Lee J., Ko H., ACS Appl. Mater. Interfaces, 2017, 9, 44088

    Article  CAS  Google Scholar 

  33. Indrasekara A., Thomasa R., Fabris L., Phys. Chem. Chem. Phys., 2015, 17, 21133

    Article  Google Scholar 

  34. Han B. J., Li Y., He Y., Lv D. Z., Peng L. X., Yu H. M., Microchem. J., 2018, 138, 457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Chen.

Additional information

Supported by the National Natural Science Foundation of China(No.11774048) and the “111” Project of China(No.B13013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zhong, Y., Sun, Y. et al. Controllable Preparation of Plasmonic Gold Nanostars for Enhanced Photothermal and SERS Effects. Chem. Res. Chin. Univ. 36, 1284–1291 (2020). https://doi.org/10.1007/s40242-020-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0049-7

Keywords

Navigation