Skip to main content
Log in

Synthesis of Caffeic Acid Sulphonamide Derivatives and Preliminary Exploration of Their Biological Applications

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Structural modification of native compounds is an effective way to develop new drugs with increased pharmacological activities and improved material characteristics. In this study, caffeic acid sulphonamide deriva-tives(CSs) were synthesised by conjugating sulphonamides to the backbone of caffeic acid. The structures of these derivatives were elucidated by means of Fourier transform infrared spectroscopy(FTIR), 1H NMR, 13C NMR, and electrospray ionization mass spectroscopy(ESI-MS). A content determination method was established by ultraviolet detection. The lipophilicity, 2,2-diphenyl-1-picrylhydrazy free radical(DPPH) scavenging capacity, anti-coagulant effects, anti-bacterial activity, cytotoxicity, in vitro anti-pro liferative activity against tumour cells, and the ability of the compounds to promote the proliferation of chondrocytes were evaluated. The results indicate that CSs exhibit strong DPPH scavenging activity, high lipophilicity, good anti-coagulant activities, wide anti-bacterial activity range, low cytotoxicity, and an excellent ability to promote chondrocyte proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang L., Lei T., Lin C., Kuang X., Chen H., Zhou H., Fitoterapia, 2010, 81(5), 389

    CAS  PubMed  Google Scholar 

  2. Luo X., Du C., Cheng H., Chen J. H., Lin C., Molecules, 2017, 22(12), 2047

    PubMed Central  Google Scholar 

  3. Vinayagam R., Jayachandran M., Xu B., Phytother. Res., 2016, 30(2), 184

    CAS  PubMed  Google Scholar 

  4. Khadem S., Maries R. J. Molecules, 2010, 75(11), 7985

    Google Scholar 

  5. Samec D., Valek-Zulj L., Martinez S., Griiz I., Piljac A., Piljac-Zegarac J., Ind. Crops andProd., 2016, 84, 104

    CAS  Google Scholar 

  6. Reis F. S., Sousa D., Barros L., Martins A., Morales P., Ferreira I. C., Vasconcelos M. H., Pood Chem. Toxicol, 2016, 90, 45

    CAS  Google Scholar 

  7. Marino A., Zengin G., Nostro A., Ginestra G., Dugo P., Cacciola F., Miceli N., Taviano M. F., Filocamo A., Bisignano G., Aktumsek A., Nat. Prod. Res., 2016, 30(22), 2620

    CAS  PubMed  Google Scholar 

  8. Zhang Y. B., Wu P., Zhang X. L., Xia C., Li G. Q., Ye W. C., Wang G. C., Li Y. L., Molecules, 2015, 20(11), 19947

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kerns E. H., Di L., Drug-like Properties: Concepts, Structure Design and Methods, Elsevier Press, Oxford, 2008

    Google Scholar 

  10. Son S., Lewis B. A., J. Agric. Pood. Chem., 2002, 50(3), 468

    CAS  Google Scholar 

  11. Wei Q., Jiang H., Zhang J., Guo P., Wang H., Med. Chem. Res., 2012, 27(8), 1905

    Google Scholar 

  12. Jiang R. W., Lau K. M., Hon P. M., Mak T. C., Woo K. S., Fung K. P., Curr. Med. Chem., 2005, 72(2), 237

    Google Scholar 

  13. Murthy H. N., Kim Y. S., Park S. Y., Paek K. Y., Appl. Microbiol. Biotechnol., 2014, 98(19), 7707

    CAS  PubMed  Google Scholar 

  14. Wei J., Liu K., Lin F., He C., Luo X., Zou J., He W., Nong W., Lin C., Appl. Biol. Chem., 2016, 59(2), 271

    CAS  Google Scholar 

  15. Wei S., Lu Z., Zou Y., Lin X., Lin C., Liu B., Zheng L., Zhao J., Plos One, 2015, 70(6), e0125930

    Google Scholar 

  16. Liu Q., Li M. Y., Lin X., Lin C. W, Liu B. M., Zheng L., Zhao J. M., Chem. Biol. Interact, 2014, 227, 127

    Google Scholar 

  17. Huang L., Lin C., Li A., Wei B., Teng J., Li L., Nat. Prod. Commun., 2010, 5(8), 1263

    CAS  PubMed  Google Scholar 

  18. Kato Y., Subcell. Biochem., 2014, 77, 21

    CAS  PubMed  Google Scholar 

  19. Chu Y., Gao J., Niu J., Huang Y. F., Chen M., Wang M. Z., Shang Q., Lu W. Q., Peng L. H., Jiang Z. H., Biomed. Pharmacother, 2018, 98, 157

    CAS  PubMed  Google Scholar 

  20. Liu W., Han L. Y., Bi Y. L., J. Henan Univ. Tech., 2014, 35(3), 98

    Google Scholar 

  21. Chen Y. J., Shiao M. S., Hsu M. L., Tsai T. H., Wang S.Y, J. Agric. Food Chem., 2001, 49(11), 5615

    CAS  PubMed  Google Scholar 

  22. Burhop A., Week R., Atzrodt J., Derdau V., Eur. J. Org. Chem., 2017, 2077(11), 1418

    Google Scholar 

  23. Koksal Z., Kalin R., Camadan Y., Usanmaz H., Almaz Z., Gulcin I., Gokcen T., Goren A. C., Ozdemir H., Molecules, 2017, 22(6), 793

    PubMed Central  Google Scholar 

  24. Liu L., Liu Q., Lin X., Wei Q. J., Zheng L., In vitro Cell. Dev. Biol. Anim., 2014, 50(10), 982

    CAS  PubMed  Google Scholar 

  25. Abraham D. J., Burger’s Medicinal Chemistry and Drug Discovery, Volume 2, Drug Discovery and Drug Development, 6th Edition, John Wiley and Sons Inc. Press, California, 2003

    Google Scholar 

  26. Brusač E., Jeličič M., Klarič D., Mornar A., Acta. Pharm., 2019, 69(4), 649

    PubMed  Google Scholar 

  27. Atrián-Blasco E., Gascón S., RodríGuez-Yoldi M. J., Laguna M., Cerrada E., Inorg Chem., 2017, 56(14), 8562

    PubMed  Google Scholar 

  28. Smith M. A., Rottkamp C. A., Nunomura A., Raina A. K., Perry G., Biochim. Biophys. Acta, 2000, 7502(1), 139

    Google Scholar 

  29. Li Y. Q., Song Q. L., Chen P. P., Zhao W. J., Wang S. S., Chem. Res. Chinese Universities, 2006, 22(6), 742

    CAS  Google Scholar 

  30. Wen Y., Killalea S., Mcgettigan R., Peely J. Ir. J. Med. Sci., 1996, 765(3), 210

    Google Scholar 

  31. Chen X., Touyz R. M., Park J. B., Schiffrin E. L., Hypertension, 2001, 38(3), 606

    CAS  PubMed  Google Scholar 

  32. Alaa B., Biologies, 2011, 5, 7

    Google Scholar 

  33. Nunez-Navarro N. E., Santana F. M., Parra L. P., Zacconi F. C., Curr. Med. Chem., 2019, 26(17), 3175

    CAS  PubMed  Google Scholar 

  34. Li C., Hu M., Jiang S., Liang Z., Wang J., Liu Z., Wang H., Kang W., Molecules, 2020, 25(1), 177

    CAS  PubMed Central  Google Scholar 

  35. Liu Z., Wang X., Mao B., Xie X., West China J. Pharm. Sci., 2016, 2, 157

    Google Scholar 

  36. Banerjee T., Vliet A. V. D., Ziboh V. A., Prostaglandins Leukot Essent Patty Acids, 2002, 66(5), 485

    CAS  Google Scholar 

  37. Li Y., Yang M., Meng T., Niu Y., Dai Y., Zhang L., Zheng X., Jalava P., Dong G., Gao W., Zheng Y., Sci. Total Environ., 2020, 709(3), 135802

    CAS  PubMed  Google Scholar 

  38. Yagawa Y., Tanigawa K., Kobayashi Y., Yamamoto M. J., Cancer Metast. Treat, 2017, 3(10), 218

    CAS  Google Scholar 

  39. Niehoff A., Kersting U. G., Helling S., Dargel J., Maurer J., Thevis M., Braggemann G. P., Eur. J. Appl. Physiol, 2010, 770(3), 651

    Google Scholar 

  40. Lu Z., Wei S., Wu H., Xiao L., Lin C., Liu B., Li Z., Zhao J., Bioorg Chem., 2014, 57, 99

    CAS  PubMed  Google Scholar 

  41. Yammani R. R., Carlson C. S., Bresnick A. R., Loeser R. F., Arthritis Rheum., 2010, 54(9), 2901

    Google Scholar 

  42. Jiang P., Wei P., Zhao M. C., Chen Q., Wang Z., Chinese J. Tissue Eng Res., 2014, 18(30), 4845

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailan Chen, Ling Chai or Cuiwu Lin.

Additional information

Supported by the Guangxi Natural Science Foundation, China(No.2016GXNSFBA380053), the Fund of the Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, China(No.Guizhongzhongkai201505).

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Zhao, A., Huang, K. et al. Synthesis of Caffeic Acid Sulphonamide Derivatives and Preliminary Exploration of Their Biological Applications. Chem. Res. Chin. Univ. 36, 795–803 (2020). https://doi.org/10.1007/s40242-020-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0014-5

Keywords

Navigation