Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 5, pp 799–805 | Cite as

Design, Synthesis and Insecticidal Activities of Novel 5-Alkoxyfuran-2(5H)-one Derivatives

  • Xianhao Wang
  • Jianguo Li
  • Guangjian Wang
  • Xianzheng Han
  • Dongmei Li
  • Zhongzhen TianEmail author
Article
  • 10 Downloads

Abstract

A series of novel 5-alkoxyfuran-2(5H)-one derivatives was synthesized, and characterized by 1H NMR, 13C NMR and HRMS. Biological activities of all the title compounds were evaluated systematically. Preliminary bioassays indicated that most of the compounds exhibited moderate insecticidal activities against Aphis craccivora and Nilaparvata lugens at 100 mg/L. Compounds 4h and 4w exhibited 100% mortality rate against Aphis craccivora at 100 mg/L, and compound h exhibited good mortality rate against Aphis craccivora and Nilaparvata lugens (60% and 75%, respectively) even at 4 mg/L. The results demonstrated the impact of various chemical groups on insecticidal activities and provided a potential clue for further exploring novel high-effective broad-spectrum insecticides.

Keywords

Butenolide derivative Flupyradifurone Neonicotinoid Insecticidal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Klein A. M., Vaissiere B. E., Cane J. H., Steffan-Dewenter I., Cunningham S. A., Kremen C., Tscharntke T., Proc. R. Soc. B, 2007, 274, 303CrossRefGoogle Scholar
  2. [2]
    Aizen M. A., Harder L. D., Curr. Biol., 2009, 19, 915CrossRefGoogle Scholar
  3. [3]
    Gallai N., Salles J. M., Settele J., Vaissiere B. E., Ecol. Econ., 2009, 68, 810CrossRefGoogle Scholar
  4. [4]
    Aizen M. A., Garibaldi L. A., Cunningham S. A., Klein A. M., Curr. Biol., 2008, 18, 1572CrossRefGoogle Scholar
  5. [5]
    Breeze T. D., Bailey A. P., Balcombe K. G., Potts S. G., Agric. Eco-syst. Environ., 2011, 142, 137CrossRefGoogle Scholar
  6. [6]
    Cresswell J. E., Robert F. X. L., Florance H., Smirnoff N., Pest. Ma-nag. Sci., 2014, 70, 332CrossRefGoogle Scholar
  7. [7]
    Fang T., Sun C. W., Xu Y. Y., Yuan J., Wang Y. F., Xing J. H., Chem. Res. Chinese Universities, 2014, 30(6), 931CrossRefGoogle Scholar
  8. [8]
    Whitehorn P. R., O’Connor S., Wackers F. L., Goulson D., Science, 2012, 336, 351CrossRefGoogle Scholar
  9. [9]
    Alkassab A. T., Kirchner W. H., Ecotoxicology, 2016, 25, 1000CrossRefGoogle Scholar
  10. [10]
    Aliouane Y., Hassani A. K., Gary V., Armengaud C., Lambin M., Gauthier M., Environ. Toxicol. Chem., 2009, 28, 113CrossRefGoogle Scholar
  11. [11]
    Hesselbach H., Scheiner R., Ecotoxicology, 2019, 28, 354CrossRefGoogle Scholar
  12. [12]
    Campbell J. W., Cabrera A. R., Stanley-Stahr C., Ellis J. D., J. Econ. Entomol., 2016, 109, 1967CrossRefGoogle Scholar
  13. [13]
    Hesselbach H., Scheiner R., Sci. Rep., 2018, 8, 4954CrossRefGoogle Scholar
  14. [14]
    Nauen R., Jeschke P., Velten R., Beck M. E., Ebbinghaus-Kintscher U., Thielert W., Wölfel K., Haas M., Kunz K., Raupach G., Pest. Manag. Sci., 2015, 71, 850CrossRefGoogle Scholar
  15. [15]
    Jeschke P., Nauen R., Gutbrod O., Beck M. E., Matthiesen S., Haas M., Velten R., Pestic. Biochem. Phys., 2015, 121, 31CrossRefGoogle Scholar
  16. [16]
    Xiao H., Parkin K. L., Phytochemistry, 2007, 68, 1059CrossRefGoogle Scholar
  17. [17]
    Xu X. Y., Zhang X. Y., He F., Peng J., Nong X. H., Qi S. H., Nat. Prod. Commun., 2013, 8, 1069PubMedGoogle Scholar
  18. [18]
    Seto Y., Kameoka H., Yamaguchi S., Kyozuka J., Plant. Cell. Phy-siol., 2012, 53, 1843CrossRefGoogle Scholar
  19. [19]
    Lattmann E., Sattayasai N., Schwalbe C. S., Niamsanit S., Billington D. C., Lattmann P., Langley C. A., Singh H., Dunn S., Curr. Drug. Discov. Technol., 2006, 3, 125CrossRefGoogle Scholar
  20. [20]
    Lu S. Y., Shao X. S., Li Z., Xu Z. P., Zhao S. H., Wu Y. L., Xu X. Y., J. Agric. Food. Chem., 2012, 60, 322CrossRefGoogle Scholar
  21. [21]
    Lizos D., Weiler S., Stiefl N. J., Organic Compounds, WO 2009013335, 2009 Google Scholar
  22. [22]
    Byczek-Wyrostek A., Kitel R., Rumak K., Skonieczna M., Kasprzycka A., Walczak K., Eur. J. Med. Chem., 2018, 150, 687CrossRefGoogle Scholar
  23. [23]
    Tian Z. Z., Shao X. S., Li Z., Qian X. H., Huang Q. C., J. Agric. Food. Chem., 2007, 55, 2288CrossRefGoogle Scholar
  24. [24]
    Zhang D. D., Cui, S. X., Xu Z. P., Li D. M., Tian Z. Z., Chin. Chem. Lett., 2017, 28, 1743CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Xianhao Wang
    • 1
  • Jianguo Li
    • 2
  • Guangjian Wang
    • 3
  • Xianzheng Han
    • 2
  • Dongmei Li
    • 1
  • Zhongzhen Tian
    • 1
    Email author
  1. 1.Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical EngineeringUniversity of JinanJinanP. R. China
  2. 2.Research and Development CenterHailir Pesticides and Chemicals Group Co., Ltd.QingdaoP. R. China
  3. 3.State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoP. R. China

Personalised recommendations