Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 333–339 | Cite as

DFT Studies on Second-order Nonlinear Optical Response of Ir(C^N)2(pic) Complexes

  • Huiying Wang
  • Zhaobin Shen
  • Jinting Ye
  • Hongqiang Wang
  • Yongqing QiuEmail author
Article
  • 20 Downloads

Abstract

Density functional theory(DFT) was employed to calculate the geometrical structures, UV-Vis absorption spectra and second-order nonlinear optical(NLO) properties of a family of iridium(III) complexes, which possess of different cyclometallated ligands(C^N) and ancillary ligands[pyridine-2-carboxylate(pic)]. It was found that the modification of the LUMO energy levels was achieved by changing pic ligands and the energy gaps between the HOMO and LUMO were notably increased or decreased. In addition, the degree of conjugation was significantly changed with the substituent groups varied, which led to that the first hyperpolarizability β could be effectively modulated. Through the analysis of time-dependent DFT(TD-DFT) results, we predicted that these studied complexes with π→π* charge transfer was beneficial to the large second-order NLO properties. Therefore, we hope that these studied iridium( III) complexes can be considered as versatile second-order NLO materials.

Keywords

Density functional theory Iridium(III) complex Second-order nonlinear optical(NLO) property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8318_MOESM1_ESM.pdf (864 kb)
Supplementary material, approximately 864 KB.

References

  1. [1]
    Coe B. J., Harris J. A., Hall J. J., Brunschwig B. S., Hung S. T., Libaers W., Clays K., Coles S. J., Horton P. N., Light M. E., Hursthouse M. B., Garín J., Orduna J., Chem. Mater., 2006, 18, 5907CrossRefGoogle Scholar
  2. [2]
    Shimada M., Yamanoi Y., Matsushita T., Kondo T., Nishibori E., Hatakeyama A., Sugimoto K., Nishihara H., J. Am. Chem. Soc., 2015, 137, 1024CrossRefGoogle Scholar
  3. [3]
    Alioli S., Nason P., Oleari C., Re E., J. High Energ. Phys., 2010, 2010, 43CrossRefGoogle Scholar
  4. [4]
    Eaton D. F., Science, 1991, 253, 281CrossRefGoogle Scholar
  5. [5]
    Ye J. T., Wang L., Wang H. Q., Pan X. M., Xie H. M., Qiu Y. Q., J. Phys. Chem. C, 2018, 122, 18850CrossRefGoogle Scholar
  6. [6]
    Wang H. Q., Wang L., Ye J. T., Xie H. M., Qiu Y. Q., J. Phys. Chem. C, 2017, 121, 28462CrossRefGoogle Scholar
  7. [7]
    Coe B. J., Avramopoulos A., Papadopoulos M. G., Pierloot K., Vancoillie S., Reis H., Chem. Eur. J., 2013, 19, 15955CrossRefGoogle Scholar
  8. [8]
    Zhang X. L., Zhao X., Liu Z. B., Shi S., Zhou W. Y., Tian G. J., Xu Y. F., Chen Y. S., J. Opt., 2011, 13, 075202CrossRefGoogle Scholar
  9. [9]
    Valore A., Colombo A., Dragonetti C., Righetto S., Roberto D., Ugo R., De Angelis F., Fantacci S., Chem. Commun., 2010, 46, 2414Google Scholar
  10. [10]
    Colombo A., Garoni E., Dragonetti C., Righetto S., Roberto D., Baggi N., Escadeillas M., Guerchais V., Kamada K., Polyhedron, 2018, 140, 116CrossRefGoogle Scholar
  11. [11]
    Ziemann E. A., Freudenreich N., Speil N., Stein T., van Steerteghem N., Clays K., Heck J., J. Organomet. Chem., 2016, 820, 125CrossRefGoogle Scholar
  12. [12]
    Triadon A., Grelaud G., Richy N., Mongin O., Moxey G. J., Dixon I. M., Yang X., Wang G., Barlow A., Rault-Berthelot J., Cifuentes M. P., Humphrey M. G., Paul F., Organometallics, 2018, 37, 2245CrossRefGoogle Scholar
  13. [13]
    Wang H. Y., Jing L. X., Wang H. Q., Ye J. T., Qiu Y. Q., J. Organomet. Chem., 2018, 869, 18CrossRefGoogle Scholar
  14. [14]
    Zhao N., Wu Y. H., Wen H. M., Zhang X., Chen Z. N., Organometallics, 2009, 28, 5603CrossRefGoogle Scholar
  15. [15]
    Liu T., Xia B. H., Zheng Q. C., Zhou X., Pan Q. J., Zhang H. X., J. Comput. Chem., 2010, 31, 628Google Scholar
  16. [16]
    Wang S. J., Wang Y. F., Cai C., J. Phys. Chem. C, 2015, 119, 5589CrossRefGoogle Scholar
  17. [17]
    Pielak K., Bondu F., Sanguinet L., Rodriguez V., Castet F., Champagne B., Dyes Pigments, 2019, 160, 641CrossRefGoogle Scholar
  18. [18]
    Escudero D., Thiel W., Champagne B., Phys. Chem. Chem. Phys., 2015, 17, 18908CrossRefGoogle Scholar
  19. [19]
    Kulasekera E., Petrie S., Stranger R., Humphrey M. G., Organometallics, 2014, 33, 2434CrossRefGoogle Scholar
  20. [20]
    Liu J., Yuan P. S., Liang A. H., Ma D. G., J. Lumin., 2018, 203, 83CrossRefGoogle Scholar
  21. [21]
    Song M. X., Huang J., Bai F. Q., Wang C. X., Liu H. B., Wang J., Li D. F., Qin Z. K., Chem. Res. Chinese Universities, 2016, 32(3), 451CrossRefGoogle Scholar
  22. [22]
    Hierlinger C., Cordes D. B., Slawin A. M. Z., Colombo A., Dragonetti C., Righetto S., Roberto D., Jacquemin D., Zysman-Colman E., Guerchais V., Dalton Trans., 2018, 47, 8292CrossRefGoogle Scholar
  23. [23]
    Davidson R. J., Hsu Y. T., Yufit D., Beeby A., Organometallics, 2018, 37, 2003CrossRefGoogle Scholar
  24. [24]
    Zhang X. Y., Yu G. T., Chen W., Huang X. R., Chem. J. Chinese Universities, 2015, 36(11), 2204Google Scholar
  25. [25]
    Li Y. F., Cui M. Q., Yan H. J., Yu Y. X., Li M. C., Li X., Chu L. H., Jiang B., Qin M. D., Mater., 2018, 11, 1809CrossRefGoogle Scholar
  26. [26]
    Wu J., Wang H. Q., Liu X. Y., Shi Z. Y., Qiu Y. Q. Chem. J. Chinese Universities, 2018, 39(7), 1490Google Scholar
  27. [27]
    Monti F., Baschieri A., Gualandi I., Serra no-Pérez J. J., Junquera-Hernández J. M., Tonelli D., Mazzanti A., Muzzioli S., Stagni S., Roldan-Carmona C., Pertegás A., Bolink H. J., Ortí E., Sambri L., Armaroli N., Inorg. Chem., 2014, 53, 7709Google Scholar
  28. [28]
    Becke A. D., J. Chem. Phys., 1993, 98, 5648CrossRefGoogle Scholar
  29. [29]
    Andrae D., Häußermann U., Dolg M., Stoll H., Preuß H., Theor. Chim. Acta, 1990, 77, 123CrossRefGoogle Scholar
  30. [30]
    Yan X., Yu Y. X., Mater. Des., 2017, 130, 512CrossRefGoogle Scholar
  31. [31]
    Grimme S., J. Comput. Chem., 2006, 27, 1787CrossRefGoogle Scholar
  32. [32]
    Cossi M., Barone V., J. Chem. Phys., 2000, 112, 2427CrossRefGoogle Scholar
  33. [33]
    Adamo C., Barone V., J. Chem. Phys., 1999, 110, 6158CrossRefGoogle Scholar
  34. [34]
    Yanai T., Tew D. P., Handy N. C., Chem. Phys. Lett., 2004, 393, 51CrossRefGoogle Scholar
  35. [35]
    Chai J. D., Head-Gordon M., Phys. Chem. Chem. Phys., 2008, 10, 6615CrossRefGoogle Scholar
  36. [36]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daiels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revsion D. 01, Gaussian Inc., Wallingford CT, 2013Google Scholar
  37. [37]
    Lu T., Chen F., J. Comput. Chem., 2012, 33, 580CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Huiying Wang
    • 1
  • Zhaobin Shen
    • 2
  • Jinting Ye
    • 1
  • Hongqiang Wang
    • 1
  • Yongqing Qiu
    • 1
    Email author
  1. 1.Institute of Functional Material Chemistry, Faculty of ChemistryNortheast Normal UniversityChangchunP. R. China
  2. 2.Beijing Guohuan Environmental Technology Co., Ltd.BeijingP. R. China

Personalised recommendations